TY - JOUR
T1 - Deep Reinforcement Learning for Weakly-Supervised Lymph Node Segmentation in CT Images
AU - Li, Zhe
AU - Xia, Yong
N1 - Publisher Copyright:
© 2013 IEEE.
PY - 2021/3
Y1 - 2021/3
N2 - Accurate and automated lymph node segmentation is pivotal for quantitatively accessing disease progression and potential therapeutics. The complex variation of lymph node morphology and the difficulty of acquiring voxel-wise manual annotations make lymph node segmentation a challenging task. Since the Response Evaluation Criteria in Solid Tumors (RECIST) annotation, which indicates the location, length, and width of a lymph node, is commonly available in hospital data archives, we advocate to use RECIST annotations as the supervision, and thus formulate this segmentation task into a weakly-supervised learning problem. In this paper, we propose a deep reinforcement learning-based lymph node segmentation (DRL-LNS) model. Based on RECIST annotations, we segment RECIST-slices in an unsupervised way to produce pseudo ground truths, which are then used to train U-Net as a segmentation network. Next, we train a DRL model, in which the segmentation network interacts with the policy network to optimize the lymph node bounding boxes and segmentation results simultaneously. The proposed DRL-LNS model was evaluated against three widely used image segmentation networks on a public thoracoabdominal Computed Tomography (CT) dataset that contains 984 3D lymph nodes, and achieves the mean Dice similarity coefficient (DSC) of 77.17% and the mean Intersection over Union (IoU) of 64.78% in the four-fold cross-validation. Our results suggest that the DRL-based bounding box prediction strategy outperforms the label propagation strategy and the proposed DRL-LNS model is able to achieve the state-of-the-art performance on this weakly-supervised lymph node segmentation task.
AB - Accurate and automated lymph node segmentation is pivotal for quantitatively accessing disease progression and potential therapeutics. The complex variation of lymph node morphology and the difficulty of acquiring voxel-wise manual annotations make lymph node segmentation a challenging task. Since the Response Evaluation Criteria in Solid Tumors (RECIST) annotation, which indicates the location, length, and width of a lymph node, is commonly available in hospital data archives, we advocate to use RECIST annotations as the supervision, and thus formulate this segmentation task into a weakly-supervised learning problem. In this paper, we propose a deep reinforcement learning-based lymph node segmentation (DRL-LNS) model. Based on RECIST annotations, we segment RECIST-slices in an unsupervised way to produce pseudo ground truths, which are then used to train U-Net as a segmentation network. Next, we train a DRL model, in which the segmentation network interacts with the policy network to optimize the lymph node bounding boxes and segmentation results simultaneously. The proposed DRL-LNS model was evaluated against three widely used image segmentation networks on a public thoracoabdominal Computed Tomography (CT) dataset that contains 984 3D lymph nodes, and achieves the mean Dice similarity coefficient (DSC) of 77.17% and the mean Intersection over Union (IoU) of 64.78% in the four-fold cross-validation. Our results suggest that the DRL-based bounding box prediction strategy outperforms the label propagation strategy and the proposed DRL-LNS model is able to achieve the state-of-the-art performance on this weakly-supervised lymph node segmentation task.
KW - Computed tomography
KW - deep reinforcement learning
KW - lymph node segmentation
KW - U-Net
UR - http://www.scopus.com/inward/record.url?scp=85102278174&partnerID=8YFLogxK
U2 - 10.1109/JBHI.2020.3008759
DO - 10.1109/JBHI.2020.3008759
M3 - 文章
C2 - 32749988
AN - SCOPUS:85102278174
SN - 2168-2194
VL - 25
SP - 774
EP - 783
JO - IEEE Journal of Biomedical and Health Informatics
JF - IEEE Journal of Biomedical and Health Informatics
IS - 3
M1 - 9139329
ER -