Deep multimodal clustering for unsupervised audiovisual learning

Di Hu, Feiping Nie, Xuelong Li

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

181 Scopus citations

Abstract

The seen birds twitter, the running cars accompany with noise, etc. These naturally audiovisual correspondences provide the possibilities to explore and understand the outside world. However, the mixed multiple objects and sounds make it intractable to perform efficient matching in the unconstrained environment. To settle this problem, we propose to adequately excavate audio and visual components and perform elaborate correspondence learning among them. Concretely, a novel unsupervised audiovisual learning model is proposed, named as Deep Multimodal Clustering (DMC),that synchronously performs sets of clustering with multimodal vectors of convolutional maps in different shared spaces for capturing multiple audiovisual correspondences. And such integrated multimodal clustering network can be effectively trained with max-margin loss in the end-to-end fashion. Amounts of experiments in feature evaluation and audiovisual tasks are performed. The results demonstrate that DMC can learn effective unimodal representation, with which the classifier can even outperform human performance. Further, DMC shows noticeable performance in sound localization, multisource detection, and audiovisual understanding.

Original languageEnglish
Title of host publicationProceedings - 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019
PublisherIEEE Computer Society
Pages9240-9249
Number of pages10
ISBN (Electronic)9781728132938
DOIs
StatePublished - Jun 2019
Event32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019 - Long Beach, United States
Duration: 16 Jun 201920 Jun 2019

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volume2019-June
ISSN (Print)1063-6919

Conference

Conference32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019
Country/TerritoryUnited States
CityLong Beach
Period16/06/1920/06/19

Keywords

  • Big Data
  • Categorization
  • Large Scale Methods
  • Others
  • Recognition: Detection
  • Representation Learning
  • Retrieval
  • Scene Analysis and Understanding
  • V

Fingerprint

Dive into the research topics of 'Deep multimodal clustering for unsupervised audiovisual learning'. Together they form a unique fingerprint.

Cite this