Deep Learning Based Secure Transmissions for the UAV-RIS Assisted Networks: Trajectory and Phase Shift Optimization

Jiawei Li, Dawei Wang, Jiankang Zhang, Osama Alfarraj, Yixin He, Saba Al-Rubaye, Keping Yu, Shahid Mumtaz

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

This paper investigates the secure transmissions in the Unmanned Aerial Vehicle (UAV) communication network facilitated by a Reconfigurable Intelligent Surface (RIS). In this network, the RIS acts as a relay, forwarding sensitive information to the legitimate receiver while preventing eavesdropping. We optimize the positions of the UAV at different time slots, which gives another degree to protect the privacy information. For the proposed network, a secrecy rate maximization problem is formulated. The non-convex problem is solved by optimizing the RIS's phase shifts and UAV trajectory. The RIS phase shift optimization problem is converted into a series of subproblems, and a non-linear fractional programming approach is conceived to solve it. Furthermore, the first-order taylor expansion is employed to transform the UAV trajectory optimization into convex function, and then we use the deep Q-network (DQN) method to obtain the UAV's trajectory. Simulation results show that the proposed scheme enhances the secrecy rate by 18.7% compared with the existing approaches.

Original languageEnglish
Title of host publicationGLOBECOM 2024 - 2024 IEEE Global Communications Conference
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1617-1622
Number of pages6
ISBN (Electronic)9798350351255
DOIs
StatePublished - 2024
Event2024 IEEE Global Communications Conference, GLOBECOM 2024 - Cape Town, South Africa
Duration: 8 Dec 202412 Dec 2024

Publication series

NameProceedings - IEEE Global Communications Conference, GLOBECOM
ISSN (Print)2334-0983
ISSN (Electronic)2576-6813

Conference

Conference2024 IEEE Global Communications Conference, GLOBECOM 2024
Country/TerritorySouth Africa
CityCape Town
Period8/12/2412/12/24

Keywords

  • Unmanned aerial vehicle
  • reconfigurable intelligent surface
  • security

Fingerprint

Dive into the research topics of 'Deep Learning Based Secure Transmissions for the UAV-RIS Assisted Networks: Trajectory and Phase Shift Optimization'. Together they form a unique fingerprint.

Cite this