Deblurring Natural Image Using Super-Gaussian Fields

Yuhang Liu, Wenyong Dong, Dong Gong, Lei Zhang, Qinfeng Shi

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

9 Scopus citations

Abstract

Blind image deblurring is a challenging problem due to its ill-posed nature, of which the success is closely related to a proper image prior. Although a large number of sparsity-based priors, such as the sparse gradient prior, have been successfully applied for blind image deblurring, they inherently suffer from several drawbacks, limiting their applications. Existing sparsity-based priors are usually rooted in modeling the response of images to some specific filters (e.g., image gradients), which are insufficient to capture the complicated image structures. Moreover, the traditional sparse priors or regularizations model the filter response (e.g., image gradients) independently and thus fail to depict the long-range correlation among them. To address the above issues, we present a novel image prior for image deblurring based on a Super-Gaussian field model with adaptive structures. Instead of modeling the response of the fixed short-term filters, the proposed Super-Gaussian fields capture the complicated structures in natural images by integrating potentials on all cliques (e.g., centring at each pixel) into a joint probabilistic distribution. Considering that the fixed filters in different scales are impractical for the coarse-to-fine framework of image deblurring, we define each potential function as a super-Gaussian distribution. Through this definition, the partition function, the curse for traditional MRFs, can be theoretically ignored, and all model parameters of the proposed Super-Gaussian fields can be data-adaptively learned and inferred from the blurred observation with a variational framework. Extensive experiments on both blind deblurring and non-blind deblurring demonstrate the effectiveness of the proposed method.

Original languageEnglish
Title of host publicationComputer Vision – ECCV 2018 - 15th European Conference, 2018, Proceedings
EditorsMartial Hebert, Vittorio Ferrari, Cristian Sminchisescu, Yair Weiss
PublisherSpringer Verlag
Pages467-484
Number of pages18
ISBN (Print)9783030012458
DOIs
StatePublished - 2018
Externally publishedYes
Event15th European Conference on Computer Vision, ECCV 2018 - Munich, Germany
Duration: 8 Sep 201814 Sep 2018

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11205 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference15th European Conference on Computer Vision, ECCV 2018
Country/TerritoryGermany
CityMunich
Period8/09/1814/09/18

Fingerprint

Dive into the research topics of 'Deblurring Natural Image Using Super-Gaussian Fields'. Together they form a unique fingerprint.

Cite this