TY - JOUR
T1 - Controlled Nucleation and Targeted Interface Modification in Wide-Bandgap Perovskite Solar Cells Based on Evaporation/Solution Two-Step Deposition
AU - Zhou, Yi Peng
AU - Wang, Liang Xu
AU - Hui, Sheng Chao
AU - Song, Lin
AU - Ran, Chenxin
AU - Wu, Zhongbin
AU - Huang, Wei
N1 - Publisher Copyright:
© 2025 American Chemical Society.
PY - 2025
Y1 - 2025
N2 - Solution deposition struggles to achieve conformal and pinhole-free wide-bandgap (WBG) perovskite films on micrometer-scale textured silicon subcells due to challenges in nucleation dynamics and film uniformity, necessitating smaller textures in the efficient perovskite/silicon tandems, which compromise light trapping and current density. While evaporation-assisted two-step deposition improves conformality, it often yields films with suboptimal crystallinity and a high defect density. To address this, we elucidate the formation mechanism of CsPbIxBr3-x nanocrystals during the thermal evaporation of PbI2/CsBr templates, which can serve as preferential nucleation sites to facilitate the growth of high-quality perovskite films. By optimizing evaporation conditions and incorporating 2,3,4,5,6-pentafluorobenzylphosphonic acid (pFBPA) during the spin-coating process, we achieved enhanced crystallization kinetics of nucleation sites and improved perovskite film uniformity. Further interface modification with pFBPA and ethane-1,2-diammonium iodide induces targeted surface dipoles at both carrier transport layers/perovskite interfaces, which not only offers better band alignment and surface passivation at both interfaces but also creates an enhanced electric field to boost electron extraction. These advancements enabled a WBG (1.68 eV) perovskite solar cell (PSC) to achieve an impressive power conversion efficiency (PCE) among WBG (1.65-1.7 eV) PSCs based on evaporation-assisted deposition. This study provides fundamental insights into achieving conformal high-quality WBG perovskite films, offering a theoretical foundation for the development of efficient perovskite/silicon tandems.
AB - Solution deposition struggles to achieve conformal and pinhole-free wide-bandgap (WBG) perovskite films on micrometer-scale textured silicon subcells due to challenges in nucleation dynamics and film uniformity, necessitating smaller textures in the efficient perovskite/silicon tandems, which compromise light trapping and current density. While evaporation-assisted two-step deposition improves conformality, it often yields films with suboptimal crystallinity and a high defect density. To address this, we elucidate the formation mechanism of CsPbIxBr3-x nanocrystals during the thermal evaporation of PbI2/CsBr templates, which can serve as preferential nucleation sites to facilitate the growth of high-quality perovskite films. By optimizing evaporation conditions and incorporating 2,3,4,5,6-pentafluorobenzylphosphonic acid (pFBPA) during the spin-coating process, we achieved enhanced crystallization kinetics of nucleation sites and improved perovskite film uniformity. Further interface modification with pFBPA and ethane-1,2-diammonium iodide induces targeted surface dipoles at both carrier transport layers/perovskite interfaces, which not only offers better band alignment and surface passivation at both interfaces but also creates an enhanced electric field to boost electron extraction. These advancements enabled a WBG (1.68 eV) perovskite solar cell (PSC) to achieve an impressive power conversion efficiency (PCE) among WBG (1.65-1.7 eV) PSCs based on evaporation-assisted deposition. This study provides fundamental insights into achieving conformal high-quality WBG perovskite films, offering a theoretical foundation for the development of efficient perovskite/silicon tandems.
KW - crystallization kinetics
KW - evaporation-assisted two-step deposition
KW - interface modification
KW - nucleation sites
KW - surface dipole
KW - wide-bandgap perovskite solar cells
UR - http://www.scopus.com/inward/record.url?scp=105002683161&partnerID=8YFLogxK
U2 - 10.1021/acsnano.5c00458
DO - 10.1021/acsnano.5c00458
M3 - 文章
AN - SCOPUS:105002683161
SN - 1936-0851
JO - ACS Nano
JF - ACS Nano
ER -