Chaos control by harmonic excitation with proper random phase

Youming Lei, Wei Xu, Yong Xu, Tong Fang

Research output: Contribution to journalArticlepeer-review

58 Scopus citations

Abstract

Chaos control may have a dual function: to suppress chaos or to generate it. We are interested in a kind of chaos control by exerting a weak harmonic excitation with random phase. The dual function of chaos control in a nonlinear dynamic system, whether a suppressing one or a generating one, can be realized by properly adjusting the level of random phase and determined by the sign of the top Lyapunov exponent of the system response. Two illustrative examples, a Duffing oscillator subject to a harmonic parametric control and a driven Murali-Lakshmanan-Chua (MLC) circuit imposed with a weak harmonic control, are presented here to show that the random phase plays a decisive role for control function. The method for computing the top Lyapunov exponent is based on Khasminskii's formulation for linearized systems. Then, the obtained results are further verified by the Poincare map analysis on dynamical behavior of the system, such as stability, bifurcation and chaos. Both two methods lead to fully consistent results.

Original languageEnglish
Pages (from-to)1175-1181
Number of pages7
JournalChaos, Solitons and Fractals
Volume21
Issue number5
DOIs
StatePublished - Sep 2004

Fingerprint

Dive into the research topics of 'Chaos control by harmonic excitation with proper random phase'. Together they form a unique fingerprint.

Cite this