BSC: Belief Shift Clustering

Zuo Wei Zhang, Zhun Ga Liu, Arnaud Martin, Kuang Zhou

Research output: Contribution to journalArticlepeer-review

44 Scopus citations

Abstract

It is still a challenging problem to characterize uncertainty and imprecision between specific (singleton) clusters with arbitrary shapes and sizes. In order to solve such a problem, we propose a belief shift clustering (BSC) method for dealing with object data. The BSC method is considered as the evidential version of mean shift or mode seeking under the theory of belief functions. First, a new notion, called belief shift, is provided to preliminarily assign each query object as the noise, precise, or imprecise one. Second, a new evidential clustering rule is designed to partial credal redistribution for each imprecise object. To avoid the 'uniform effect' and useless calculations, a specific dynamic framework with simulated cluster centers is established to reassign each imprecise object to a singleton cluster or related meta-cluster. Once an object is assigned to a meta-cluster, this object may be in the overlapping or intermediate areas of different singleton clusters. Consequently, the BSC can reasonably characterize the uncertainty and imprecision between singleton clusters. The effectiveness has been verified on several artificial, natural, and image segmentation/classification datasets by comparison with other related methods.

Original languageEnglish
Pages (from-to)1748-1760
Number of pages13
JournalIEEE Transactions on Systems, Man, and Cybernetics: Systems
Volume53
Issue number3
DOIs
StatePublished - 1 Mar 2023

Keywords

  • Belief shift
  • evidential clustering
  • mean shift (or) mode seeking (MS)
  • uncertainty

Fingerprint

Dive into the research topics of 'BSC: Belief Shift Clustering'. Together they form a unique fingerprint.

Cite this