Beyond the Prototype: Divide-and-conquer Proxies for Few-shot Segmentation

Chunbo Lang, Binfei Tu, Gong Cheng, Junwei Han

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

31 Scopus citations

Abstract

Few-shot segmentation, which aims to segment unseen-class objects given only a handful of densely labeled samples, has received widespread attention from the community. Existing approaches typically follow the prototype learning paradigm to perform meta-inference, which fails to fully exploit the underlying information from support image-mask pairs, resulting in various segmentation failures, e.g., incomplete objects, ambiguous boundaries, and distractor activation. To this end, we propose a simple yet versatile framework in the spirit of divide-and-conquer. Specifically, a novel self-reasoning scheme is first implemented on the annotated support image, and then the coarse segmentation mask is divided into multiple regions with different properties. Leveraging effective masked average pooling operations, a series of support-induced proxies are thus derived, each playing a specific role in conquering the above challenges. Moreover, we devise a unique parallel decoder structure that integrates proxies with similar attributes to boost the discrimination power. Our proposed approach, named divide- and-conquer proxies (DCP), allows for the development of appropriate and reliable information as a guide at the “episode” level, not just about the object cues themselves. Extensive experiments on PASCAL-5i and COCO-20i demonstrate the superiority of DCP over conventional prototype-based approaches (up to 5 ∼10% on average), which also establishes a new state-of-the-art. Code is available at github.com/chunbolang/DCP.

Original languageEnglish
Title of host publicationProceedings of the 31st International Joint Conference on Artificial Intelligence, IJCAI 2022
EditorsLuc De Raedt, Luc De Raedt
PublisherInternational Joint Conferences on Artificial Intelligence
Pages1024-1030
Number of pages7
ISBN (Electronic)9781956792003
DOIs
StatePublished - 2022
Event31st International Joint Conference on Artificial Intelligence, IJCAI 2022 - Vienna, Austria
Duration: 23 Jul 202229 Jul 2022

Publication series

NameIJCAI International Joint Conference on Artificial Intelligence
ISSN (Print)1045-0823

Conference

Conference31st International Joint Conference on Artificial Intelligence, IJCAI 2022
Country/TerritoryAustria
CityVienna
Period23/07/2229/07/22

Fingerprint

Dive into the research topics of 'Beyond the Prototype: Divide-and-conquer Proxies for Few-shot Segmentation'. Together they form a unique fingerprint.

Cite this