TY - JOUR
T1 - Background Prior-Based Salient Object Detection via Deep Reconstruction Residual
AU - Han, Junwei
AU - Zhang, Dingwen
AU - Hu, Xintao
AU - Guo, Lei
AU - Ren, Jinchang
AU - Wu, Feng
N1 - Publisher Copyright:
© 1991-2012 IEEE.
PY - 2015/8/1
Y1 - 2015/8/1
N2 - Detection of salient objects from images is gaining increasing research interest in recent years as it can substantially facilitate a wide range of content-based multimedia applications. Based on the assumption that foreground salient regions are distinctive within a certain context, most conventional approaches rely on a number of hand-designed features and their distinctiveness is measured using local or global contrast. Although these approaches have been shown to be effective in dealing with simple images, their limited capability may cause difficulties when dealing with more complicated images. This paper proposes a novel framework for saliency detection by first modeling the background and then separating salient objects from the background. We develop stacked denoising autoencoders with deep learning architectures to model the background where latent patterns are explored and more powerful representations of data are learned in an unsupervised and bottom-up manner. Afterward, we formulate the separation of salient objects from the background as a problem of measuring reconstruction residuals of deep autoencoders. Comprehensive evaluations of three benchmark datasets and comparisons with nine state-of-the-art algorithms demonstrate the superiority of this paper.
AB - Detection of salient objects from images is gaining increasing research interest in recent years as it can substantially facilitate a wide range of content-based multimedia applications. Based on the assumption that foreground salient regions are distinctive within a certain context, most conventional approaches rely on a number of hand-designed features and their distinctiveness is measured using local or global contrast. Although these approaches have been shown to be effective in dealing with simple images, their limited capability may cause difficulties when dealing with more complicated images. This paper proposes a novel framework for saliency detection by first modeling the background and then separating salient objects from the background. We develop stacked denoising autoencoders with deep learning architectures to model the background where latent patterns are explored and more powerful representations of data are learned in an unsupervised and bottom-up manner. Afterward, we formulate the separation of salient objects from the background as a problem of measuring reconstruction residuals of deep autoencoders. Comprehensive evaluations of three benchmark datasets and comparisons with nine state-of-the-art algorithms demonstrate the superiority of this paper.
KW - deep reconstruction residual
KW - salient object detection
KW - stacked denoising autoencoder
UR - http://www.scopus.com/inward/record.url?scp=84926497888&partnerID=8YFLogxK
U2 - 10.1109/TCSVT.2014.2381471
DO - 10.1109/TCSVT.2014.2381471
M3 - 文章
AN - SCOPUS:84926497888
SN - 1051-8215
VL - 25
SP - 1309
EP - 1321
JO - IEEE Transactions on Circuits and Systems for Video Technology
JF - IEEE Transactions on Circuits and Systems for Video Technology
IS - 8
M1 - 6987333
ER -