Auto-weighted multi-view learning for image clustering and semi-supervised classification

Feiping Nie, Guohao Cai, Jing Li, Xuelong Li

Research output: Contribution to journalArticlepeer-review

364 Scopus citations

Abstract

Due to the efficiency of learning relationships and complex structures hidden in data, graph-oriented methods have been widely investigated and achieve promising performance. Generally, in the field of multi-view learning, these algorithms construct informative graph for each view, on which the following clustering or classification procedure are based. However, in many real-world data sets, original data always contain noises and outlying entries that result in unreliable and inaccurate graphs, which cannot be ameliorated in the previous methods. In this paper, we propose a novel multiview learning model which performs clustering/semi-supervised classification and local structure learning simultaneously. The obtained optimal graph can be partitioned into specific clusters directly. Moreover, our model can allocate ideal weight for each view automatically without explicit weight definition and penalty parameters. An efficient algorithm is proposed to optimize this model. Extensive experimental results on different real-world data sets show that the proposed model outperforms other stateof- the-art multi-view algorithms.

Original languageEnglish
Pages (from-to)1501-1511
Number of pages11
JournalIEEE Transactions on Image Processing
Volume27
Issue number3
DOIs
StatePublished - Mar 2018

Keywords

  • Auto-weight learning
  • Multi-view clustering
  • Semi-supervised classification

Fingerprint

Dive into the research topics of 'Auto-weighted multi-view learning for image clustering and semi-supervised classification'. Together they form a unique fingerprint.

Cite this