TY - GEN
T1 - ASPS
T2 - 27th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2024
AU - Li, Huiqian
AU - Zhang, Dingwen
AU - Yao, Jieru
AU - Han, Longfei
AU - Li, Zhongyu
AU - Han, Junwei
N1 - Publisher Copyright:
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.
PY - 2024
Y1 - 2024
N2 - Polyp segmentation plays a pivotal role in colorectal cancer diagnosis. Recently, the emergence of the Segment Anything Model (SAM) has introduced unprecedented potential for polyp segmentation, leveraging its powerful pre-training capability on large-scale datasets. However, due to the domain gap between natural and endoscopy images, SAM encounters two limitations in achieving effective performance in polyp segmentation. Firstly, its Transformer-based structure prioritizes global and low-frequency information, potentially overlooking local details, and introducing bias into the learned features. Secondly, when applied to endoscopy images, its poor out-of-distribution (OOD) performance results in substandard predictions and biased confidence output. To tackle these challenges, we introduce a novel approach named Augmented SAM for Polyp Segmentation (ASPS), equipped with two modules: Cross-branch Feature Augmentation (CFA) and Uncertainty-guided Prediction Regularization (UPR). CFA integrates a trainable CNN encoder branch with a frozen ViT encoder, enabling the integration of domain-specific knowledge while enhancing local features and high-frequency details. Moreover, UPR ingeniously leverages SAM’s IoU score to mitigate uncertainty during the training procedure, thereby improving OOD performance and domain generalization. Extensive experimental results demonstrate the effectiveness and utility of the proposed method in improving SAM’s performance in polyp segmentation.
AB - Polyp segmentation plays a pivotal role in colorectal cancer diagnosis. Recently, the emergence of the Segment Anything Model (SAM) has introduced unprecedented potential for polyp segmentation, leveraging its powerful pre-training capability on large-scale datasets. However, due to the domain gap between natural and endoscopy images, SAM encounters two limitations in achieving effective performance in polyp segmentation. Firstly, its Transformer-based structure prioritizes global and low-frequency information, potentially overlooking local details, and introducing bias into the learned features. Secondly, when applied to endoscopy images, its poor out-of-distribution (OOD) performance results in substandard predictions and biased confidence output. To tackle these challenges, we introduce a novel approach named Augmented SAM for Polyp Segmentation (ASPS), equipped with two modules: Cross-branch Feature Augmentation (CFA) and Uncertainty-guided Prediction Regularization (UPR). CFA integrates a trainable CNN encoder branch with a frozen ViT encoder, enabling the integration of domain-specific knowledge while enhancing local features and high-frequency details. Moreover, UPR ingeniously leverages SAM’s IoU score to mitigate uncertainty during the training procedure, thereby improving OOD performance and domain generalization. Extensive experimental results demonstrate the effectiveness and utility of the proposed method in improving SAM’s performance in polyp segmentation.
KW - Domain Adaptation
KW - Polyp Segmentation
KW - Segment Anything Model
UR - http://www.scopus.com/inward/record.url?scp=85210095961&partnerID=8YFLogxK
U2 - 10.1007/978-3-031-72114-4_12
DO - 10.1007/978-3-031-72114-4_12
M3 - 会议稿件
AN - SCOPUS:85210095961
SN - 9783031721137
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 118
EP - 128
BT - Medical Image Computing and Computer Assisted Intervention – MICCAI 2024, 27th International Conference Proceedings
A2 - Linguraru, Marius George
A2 - Dou, Qi
A2 - Feragen, Aasa
A2 - Giannarou, Stamatia
A2 - Glocker, Ben
A2 - Lekadir, Karim
A2 - Schnabel, Julia A.
PB - Springer Science and Business Media Deutschland GmbH
Y2 - 6 October 2024 through 10 October 2024
ER -