AS-70: A Mandarin stuttered speech dataset for automatic speech recognition and stuttering event detection

Rong Gong, Hongfei Xue, Lezhi Wang, Xin Xu, Qisheng Li, Lei Xie, Hui Bu, Shaomei Wu, Jiaming Zhou, Yong Qin, Binbin Zhang, Jun Du, Jia Bin, Ming Li

Research output: Contribution to journalConference articlepeer-review

2 Scopus citations

Abstract

The rapid advancements in speech technologies over the past two decades have led to human-level performance in tasks like automatic speech recognition (ASR) for fluent speech. However, the efficacy of these models diminishes when applied to atypical speech, such as stuttering. This paper introduces AS-70, the first publicly available Mandarin stuttered speech dataset, which stands out as the largest dataset in its category. Encompassing conversational and voice command reading speech, AS-70 includes verbatim manual transcription, rendering it suitable for various speech-related tasks. Furthermore, baseline systems are established, and experimental results are presented for ASR and stuttering event detection (SED) tasks. By incorporating this dataset into the model fine-tuning, significant improvements in the state-of-the-art ASR models, e.g., Whisper and Hubert, are observed, enhancing their inclusivity in addressing stuttered speech.

Original languageEnglish
Pages (from-to)5098-5102
Number of pages5
JournalProceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH
DOIs
StatePublished - 2024
Event25th Interspeech Conferece 2024 - Kos Island, Greece
Duration: 1 Sep 20245 Sep 2024

Keywords

  • mandarin stuttered speech dataset
  • speech recognition
  • stuttering event detection

Fingerprint

Dive into the research topics of 'AS-70: A Mandarin stuttered speech dataset for automatic speech recognition and stuttering event detection'. Together they form a unique fingerprint.

Cite this