An Improved Solution to the Frequency-Invariant Beamforming with Concentric Circular Microphone Arrays

Xudong Zhao, Gongping Huang, Jingdong Chen, Jacob Benesty

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

10 Scopus citations

Abstract

Frequency-invariant beamforming with circular microphone arrays (CMAs) has drawn a significant amount of attention for its steering flexibility and high directivity. However, frequency-invariant beam-forming with CMAs often suffers from the so-called null problem, which is caused by the zeros of the Bessel functions; then, concentric CMAs (CCMAs) are used to deal with this problem. While frequency-invariant beamforming with CCMAs can mitigate the null problem, the beampattern is still suffering from distortion due to s-patial aliasing at high frequencies. In this paper, we find that the spatial aliasing problem is caused by higher-order circular harmonics. To deal with this problem, we take the aliasing harmonics into account and approximate the beampattern with a higher truncation order of the Jacobi-Anger expansion than required. Then, the beam-forming filter is determined by minimizing the errors between the desired directivity pattern and the approximated one. Simulation results show that the developed method can mitigate the distortion of the beampattern caused by spatial aliasing.

Original languageEnglish
Title of host publication2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages556-560
Number of pages5
ISBN (Electronic)9781509066315
DOIs
StatePublished - May 2020
Event2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Barcelona, Spain
Duration: 4 May 20208 May 2020

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2020-May
ISSN (Print)1520-6149

Conference

Conference2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020
Country/TerritorySpain
CityBarcelona
Period4/05/208/05/20

Keywords

  • concentric circular arrays
  • frequency-invariant beamforming
  • Microphone arrays
  • spatial aliasing

Fingerprint

Dive into the research topics of 'An Improved Solution to the Frequency-Invariant Beamforming with Concentric Circular Microphone Arrays'. Together they form a unique fingerprint.

Cite this