TY - GEN
T1 - An improved NSGA-III procedure for evolutionary many-objective optimization
AU - Yuan, Yuan
AU - Xu, Hua
AU - Wang, Bo
PY - 2014
Y1 - 2014
N2 - Many-objective (four or more objectives) optimization problems pose a great challenge to the classical Pareto-dominance based multi-objective evolutionary algorithms (MOEAs), such as NSGA-II and SPEA2. This is mainly due to the fact that the selection pressure based on Pareto-dominance degrades severely with the number of objectives increasing. Very recently, a reference-point based NSGA-II, referred as NSGA-III, is suggested to deal with many-objective problems, where the maintenance of diversity among population members is aided by supplying and adaptively updating a number of well-spread reference points. However, NSGA-III still relies on Pareto-dominance to push the population towards Pareto front (PF), leaving room for the improvement of its convergence ability. In this paper, an improved NSGAIII procedure, called θ-NSGA-III, is proposed, aiming to better tradeoff the convergence and diversity in many-objective optimization. In θ-NSGA-III, the non-dominated sorting scheme based on the proposed θ-dominance is employed to rank solutions in the environmental selection phase, which ensures both convergence and diversity. Computational experiments have shown that θ-NSGA-III is significantly better than the original NSGA-III and MOEA/D on most instances no matter in convergence and overall performance.
AB - Many-objective (four or more objectives) optimization problems pose a great challenge to the classical Pareto-dominance based multi-objective evolutionary algorithms (MOEAs), such as NSGA-II and SPEA2. This is mainly due to the fact that the selection pressure based on Pareto-dominance degrades severely with the number of objectives increasing. Very recently, a reference-point based NSGA-II, referred as NSGA-III, is suggested to deal with many-objective problems, where the maintenance of diversity among population members is aided by supplying and adaptively updating a number of well-spread reference points. However, NSGA-III still relies on Pareto-dominance to push the population towards Pareto front (PF), leaving room for the improvement of its convergence ability. In this paper, an improved NSGAIII procedure, called θ-NSGA-III, is proposed, aiming to better tradeoff the convergence and diversity in many-objective optimization. In θ-NSGA-III, the non-dominated sorting scheme based on the proposed θ-dominance is employed to rank solutions in the environmental selection phase, which ensures both convergence and diversity. Computational experiments have shown that θ-NSGA-III is significantly better than the original NSGA-III and MOEA/D on most instances no matter in convergence and overall performance.
KW - Many-objective optimization
KW - NSGA-III
KW - Non-dominated sorting
KW - θ -NSGA-III
KW - θ -dominance
UR - http://www.scopus.com/inward/record.url?scp=84905695550&partnerID=8YFLogxK
U2 - 10.1145/2576768.2598342
DO - 10.1145/2576768.2598342
M3 - 会议稿件
AN - SCOPUS:84905695550
SN - 9781450326629
T3 - GECCO 2014 - Proceedings of the 2014 Genetic and Evolutionary Computation Conference
SP - 661
EP - 668
BT - GECCO 2014 - Proceedings of the 2014 Genetic and Evolutionary Computation Conference
PB - Association for Computing Machinery
T2 - 16th Genetic and Evolutionary Computation Conference, GECCO 2014
Y2 - 12 July 2014 through 16 July 2014
ER -