TY - JOUR
T1 - Agarics-derived porous Fe/C material activated by ZnCl2 and its enhanced microwave absorption performance
AU - Su, Jinbu
AU - Xu, Yuyi
AU - Yang, Rui
AU - Lin, Xuli
AU - Xie, Yunong
AU - Zhao, Heng
AU - Shi, Chenyi
AU - Dong, Xinyu
AU - Wang, Chengbing
AU - Qing, Yuchang
AU - Luo, Fa
N1 - Publisher Copyright:
© 2024 Elsevier B.V.
PY - 2024/11/20
Y1 - 2024/11/20
N2 - Biomass-derived carbon materials retain the unique porous structure of biological raw materials and have environmental advantages, making them a popular choice for electromagnetic microwave absorption research. The microwave absorption performance of biomass-derived carbon materials is largely influenced by their pore structure, which can be controlled by chemical activators. In this study, ZnCl2 was chosen as the activator and de-impregnated agarics with Fe(NO3)3·9 H2O for pretreatment. The Fe(NO3)3·9 H2O can provide magnetic Fe particles for the material to enhance the magnetic loss ability. And the weakly acidic ZnCl2 can avoid the pollution of the environment, and its dehydration and dehydroxylation properties can release the hydrogen and oxygen in the biomass char material in the form of water vapor, and release the hydrogen and oxygen in the biomass carbon material in the form of water vapor, and form a porous structure. porous structure. In addition, ZnCl2 will be converted to ZnO during the activation process, and the removal of ZnO by acid washing will increase the internal pore volume, form a conductive network, and form a rich three-dimensional interconnected pore structure. The pretreated samples were vacuum carbonized at high temperature to obtain agarics-derived porous Fe/C material, which is an excellent lightweight and high-performance microwave absorbing material. The resulting material has a wider absorption bandwidth and improved microwave absorption performance. At a thickness of 2.55 mm and a frequency of 8.31 GHz, the RLmin of Fe/C material is −51.14 dB. Furthermore, at a thickness of 2.13 mm, it has an effective absorption bandwidth of 3.63 GHz, covering most of the X-band.
AB - Biomass-derived carbon materials retain the unique porous structure of biological raw materials and have environmental advantages, making them a popular choice for electromagnetic microwave absorption research. The microwave absorption performance of biomass-derived carbon materials is largely influenced by their pore structure, which can be controlled by chemical activators. In this study, ZnCl2 was chosen as the activator and de-impregnated agarics with Fe(NO3)3·9 H2O for pretreatment. The Fe(NO3)3·9 H2O can provide magnetic Fe particles for the material to enhance the magnetic loss ability. And the weakly acidic ZnCl2 can avoid the pollution of the environment, and its dehydration and dehydroxylation properties can release the hydrogen and oxygen in the biomass char material in the form of water vapor, and release the hydrogen and oxygen in the biomass carbon material in the form of water vapor, and form a porous structure. porous structure. In addition, ZnCl2 will be converted to ZnO during the activation process, and the removal of ZnO by acid washing will increase the internal pore volume, form a conductive network, and form a rich three-dimensional interconnected pore structure. The pretreated samples were vacuum carbonized at high temperature to obtain agarics-derived porous Fe/C material, which is an excellent lightweight and high-performance microwave absorbing material. The resulting material has a wider absorption bandwidth and improved microwave absorption performance. At a thickness of 2.55 mm and a frequency of 8.31 GHz, the RLmin of Fe/C material is −51.14 dB. Furthermore, at a thickness of 2.13 mm, it has an effective absorption bandwidth of 3.63 GHz, covering most of the X-band.
KW - Biomass
KW - Microwave absorption
KW - Pores
KW - ZnCl
UR - http://www.scopus.com/inward/record.url?scp=85199930186&partnerID=8YFLogxK
U2 - 10.1016/j.colsurfa.2024.134964
DO - 10.1016/j.colsurfa.2024.134964
M3 - 文章
AN - SCOPUS:85199930186
SN - 0927-7757
VL - 701
JO - Colloids and Surfaces A: Physicochemical and Engineering Aspects
JF - Colloids and Surfaces A: Physicochemical and Engineering Aspects
M1 - 134964
ER -