TY - JOUR
T1 - A water-soluble phosphorescent polymer for time-resolved assay and bioimaging of cysteine/homocysteine
AU - Ma, Yun
AU - Liu, Shujuan
AU - Yang, Huiran
AU - Wu, Yongquan
AU - Sun, Huibin
AU - Wang, Jingxia
AU - Zhao, Qiang
AU - Li, Fuyou
AU - Huang, Wei
PY - 2013/1/21
Y1 - 2013/1/21
N2 - A water-soluble phosphorescent bioprobe was successfully developed by introducing an iridium(iii) complex as a phosphorescent signaling unit with poly(N-isopropylacrylamide) (PNIPAM) as the stimuli-responsive backbone. The probe was used for the effective detection of cysteine (Cys)/homocysteine (Hcy) and temperature based on changes in the phosphorescence signal. The design principle was based on the fact that the aldehyde groups in the cyclometalated ligands of the iridium(iii) complex moiety can react with the β- or γ-aminothiol group to form thiazolidine or thiazinane, respectively, resulting in a phosphorescence change in the iridium(iii) complex, thereby facilitating the detection of Cys and Hcy. Moreover, a phosphorescent hydrogel based on this probe was formed upon cross-linking and was then used as a quasi-solid sensing system for detecting Cys and Hcy. Furthermore, by using a time-resolved photoluminescence technique, the probe can detect Hcy in the presence of intense background fluorescence. In addition, phase changes in temperature-responsive PNIPAM can result in a switch of microenvironment between hydrophilicity and hydrophobicity, to which the phosphorescent emission of the iridium(iii) complex is very sensitive. This bioprobe integrates water solubility, biocompatibility, and sensing capability into one system, which is advantageous for biological applications. Further investigation of the application of the bioprobe for living-cell imaging confirmed that the probe is membrane permeable and is capable of detecting Cys in living cells with notable phosphorescence enhancement. Fluorescence lifetime imaging microscopy is successfully applied for sensing and bioimaging of intracellular Cys in the presence of short-lived background fluorescence.
AB - A water-soluble phosphorescent bioprobe was successfully developed by introducing an iridium(iii) complex as a phosphorescent signaling unit with poly(N-isopropylacrylamide) (PNIPAM) as the stimuli-responsive backbone. The probe was used for the effective detection of cysteine (Cys)/homocysteine (Hcy) and temperature based on changes in the phosphorescence signal. The design principle was based on the fact that the aldehyde groups in the cyclometalated ligands of the iridium(iii) complex moiety can react with the β- or γ-aminothiol group to form thiazolidine or thiazinane, respectively, resulting in a phosphorescence change in the iridium(iii) complex, thereby facilitating the detection of Cys and Hcy. Moreover, a phosphorescent hydrogel based on this probe was formed upon cross-linking and was then used as a quasi-solid sensing system for detecting Cys and Hcy. Furthermore, by using a time-resolved photoluminescence technique, the probe can detect Hcy in the presence of intense background fluorescence. In addition, phase changes in temperature-responsive PNIPAM can result in a switch of microenvironment between hydrophilicity and hydrophobicity, to which the phosphorescent emission of the iridium(iii) complex is very sensitive. This bioprobe integrates water solubility, biocompatibility, and sensing capability into one system, which is advantageous for biological applications. Further investigation of the application of the bioprobe for living-cell imaging confirmed that the probe is membrane permeable and is capable of detecting Cys in living cells with notable phosphorescence enhancement. Fluorescence lifetime imaging microscopy is successfully applied for sensing and bioimaging of intracellular Cys in the presence of short-lived background fluorescence.
UR - http://www.scopus.com/inward/record.url?scp=84876555388&partnerID=8YFLogxK
U2 - 10.1039/c2tb00259k
DO - 10.1039/c2tb00259k
M3 - 文章
AN - SCOPUS:84876555388
SN - 2050-750X
VL - 1
SP - 319
EP - 329
JO - Journal of Materials Chemistry B
JF - Journal of Materials Chemistry B
IS - 3
ER -