TY - JOUR
T1 - A novel conflict management method based on uncertainty of evidence and reinforcement learning for multi-sensor information fusion
AU - Huang, Fanghui
AU - Zhang, Yu
AU - Wang, Ziqing
AU - Deng, Xinyang
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/9
Y1 - 2021/9
N2 - Dempster–Shafer theory (DST), which is widely used in information fusion, can process uncertain information without prior information; however, when the evidence to combine is highly conflicting, it may lead to counter-intuitive results. Moreover, the existing methods are not strong enough to process real-time and online conflicting evidence. In order to solve the above problems, a novel information fusion method is proposed in this paper. The proposed method combines the uncertainty of evidence and reinforcement learning (RL). Specifically, we consider two uncertainty degrees: the uncertainty of the original basic probability assignment (BPA) and the uncertainty of its negation. Then, Deng entropy is used to measure the uncertainty of BPAs. Two uncertainty degrees are considered as the condition of measuring information quality. Then, the adaptive conflict processing is performed by RL and the combination two uncertainty degrees. The next step is to compute Dempster’s combination rule (DCR) to achieve multi-sensor information fusion. Finally, a decision scheme based on correlation coefficient is used to make the decision. The proposed method not only realizes adaptive conflict evidence management, but also improves the accuracy of multi-sensor information fusion and reduces information loss. Numerical examples verify the effectiveness of the proposed method.
AB - Dempster–Shafer theory (DST), which is widely used in information fusion, can process uncertain information without prior information; however, when the evidence to combine is highly conflicting, it may lead to counter-intuitive results. Moreover, the existing methods are not strong enough to process real-time and online conflicting evidence. In order to solve the above problems, a novel information fusion method is proposed in this paper. The proposed method combines the uncertainty of evidence and reinforcement learning (RL). Specifically, we consider two uncertainty degrees: the uncertainty of the original basic probability assignment (BPA) and the uncertainty of its negation. Then, Deng entropy is used to measure the uncertainty of BPAs. Two uncertainty degrees are considered as the condition of measuring information quality. Then, the adaptive conflict processing is performed by RL and the combination two uncertainty degrees. The next step is to compute Dempster’s combination rule (DCR) to achieve multi-sensor information fusion. Finally, a decision scheme based on correlation coefficient is used to make the decision. The proposed method not only realizes adaptive conflict evidence management, but also improves the accuracy of multi-sensor information fusion and reduces information loss. Numerical examples verify the effectiveness of the proposed method.
KW - Correlation coefficient
KW - Multi-sensor information fusion
KW - Negation of evidence
KW - Reinforcement learning
KW - Uncertainty degree
UR - http://www.scopus.com/inward/record.url?scp=85115762446&partnerID=8YFLogxK
U2 - 10.3390/e23091222
DO - 10.3390/e23091222
M3 - 文章
AN - SCOPUS:85115762446
SN - 1099-4300
VL - 23
JO - Entropy
JF - Entropy
IS - 9
M1 - 1222
ER -