A New Comprehensive Benchmark for Semi-supervised Video Anomaly Detection and Anticipation

Congqi Cao, Yue Lu, Peng Wang, Yanning Zhang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

34 Scopus citations

Abstract

Semi-supervised video anomaly detection (VAD) is a critical task in the intelligent surveillance system. However, an essential type of anomaly in VAD named scene-dependent anomaly has not received the attention of researchers. Moreover, there is no research investigating anomaly anticipation, a more significant task for preventing the occurrence of anomalous events. To this end, we propose a new comprehensive dataset, NWPU Campus, containing 43 scenes, 28 classes of abnormal events, and 16 hours of videos. At present, it is the largest semi-supervised VAD dataset with the largest number of scenes and classes of anomalies, the longest duration, and the only one considering the scene-dependent anomaly. Meanwhile, it is also the first dataset proposed for video anomaly anticipation. We further propose a novel model capable of detecting and anticipating anomalous events simultaneously. Compared with 7 outstanding VAD algorithms in recent years, our method can cope with scene-dependent anomaly detection and anomaly anticipation both well, achieving state-of-the-art performance on ShanghaiTech, CUHK Avenue, IITB Corridor and the newly proposed NWPU Campus datasets consistently. Our dataset and code is available at: https://campusvad.github.io.

Original languageEnglish
Title of host publicationProceedings - 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023
PublisherIEEE Computer Society
Pages20392-20401
Number of pages10
ISBN (Electronic)9798350301298
DOIs
StatePublished - 2023
Event2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023 - Vancouver, Canada
Duration: 18 Jun 202322 Jun 2023

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volume2023-June
ISSN (Print)1063-6919

Conference

Conference2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023
Country/TerritoryCanada
CityVancouver
Period18/06/2322/06/23

Keywords

  • Datasets and evaluation

Fingerprint

Dive into the research topics of 'A New Comprehensive Benchmark for Semi-supervised Video Anomaly Detection and Anticipation'. Together they form a unique fingerprint.

Cite this