A combined GCMC and FVM simulation method for CO2 adsorption in 13X zeolite adsorption bed

H. Wang, J. Q. Bai, Z. G. Qu, Y. Wang, Y. Zhang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

A multi-scale method combining the finite volume model (FVM) considering Darcy-Brinkman formulation with grand conical Monte Carlo (GCMC) is built to study the process of CO2 adsorption in 13X zeolite particle bed. The saturation adsorption capacities and adsorption heat in FVM method are calculated by Langmuir model and linear fitting formula, respectively. The GCMC method is used to obtain the parameters of Langmuir model and linear fitting formula. The multi-scale method overcomes the shortcomings of the saturation adsorption capacities restricted by level of experimentation or empirical formula. The relationship between adsorption heat and adsorption amount is also obtained. The value of adsorption heat is no longer treated as the constant value or obtained from the empirical formula. The effects of velocity, particle size, porosity and thermal conductivity of particle on CO2 adsorption in13X zeolite particle bed are investigated. The results show that the saturation adsorption time decreases with increased velocity, porosity and thermal conductivity of particle, while increases with increased particle size. The peak of temperature difference between the solid and gas phase increases with increased inlet velocity, porosity and particle size, while decreases with thermal conductivity of particle. The temperature difference trends uniformity and the peak of temperature difference moves towards to the outlet of adsorption bed with adsorption time processing. The adsorption bed with a higher inlet velocity, porosity and thermal conductivity of particle, and smaller particle size is recommended to improve the adsorption bed performance.

Original languageEnglish
Title of host publicationHeat Transfer and Thermal Engineering
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791852118
DOIs
StatePublished - 2018
EventASME 2018 International Mechanical Engineering Congress and Exposition, IMECE 2018 - Pittsburgh, United States
Duration: 9 Nov 201815 Nov 2018

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
Volume8A-2018

Conference

ConferenceASME 2018 International Mechanical Engineering Congress and Exposition, IMECE 2018
Country/TerritoryUnited States
CityPittsburgh
Period9/11/1815/11/18

Keywords

  • 13 X zeolite
  • Adsorption
  • GCMC
  • Heat and mass transfer
  • Temperature difference

Fingerprint

Dive into the research topics of 'A combined GCMC and FVM simulation method for CO2 adsorption in 13X zeolite adsorption bed'. Together they form a unique fingerprint.

Cite this