TY - GEN
T1 - A combined GCMC and FVM simulation method for CO2 adsorption in 13X zeolite adsorption bed
AU - Wang, H.
AU - Bai, J. Q.
AU - Qu, Z. G.
AU - Wang, Y.
AU - Zhang, Y.
N1 - Publisher Copyright:
Copyright © 2018 ASME.
PY - 2018
Y1 - 2018
N2 - A multi-scale method combining the finite volume model (FVM) considering Darcy-Brinkman formulation with grand conical Monte Carlo (GCMC) is built to study the process of CO2 adsorption in 13X zeolite particle bed. The saturation adsorption capacities and adsorption heat in FVM method are calculated by Langmuir model and linear fitting formula, respectively. The GCMC method is used to obtain the parameters of Langmuir model and linear fitting formula. The multi-scale method overcomes the shortcomings of the saturation adsorption capacities restricted by level of experimentation or empirical formula. The relationship between adsorption heat and adsorption amount is also obtained. The value of adsorption heat is no longer treated as the constant value or obtained from the empirical formula. The effects of velocity, particle size, porosity and thermal conductivity of particle on CO2 adsorption in13X zeolite particle bed are investigated. The results show that the saturation adsorption time decreases with increased velocity, porosity and thermal conductivity of particle, while increases with increased particle size. The peak of temperature difference between the solid and gas phase increases with increased inlet velocity, porosity and particle size, while decreases with thermal conductivity of particle. The temperature difference trends uniformity and the peak of temperature difference moves towards to the outlet of adsorption bed with adsorption time processing. The adsorption bed with a higher inlet velocity, porosity and thermal conductivity of particle, and smaller particle size is recommended to improve the adsorption bed performance.
AB - A multi-scale method combining the finite volume model (FVM) considering Darcy-Brinkman formulation with grand conical Monte Carlo (GCMC) is built to study the process of CO2 adsorption in 13X zeolite particle bed. The saturation adsorption capacities and adsorption heat in FVM method are calculated by Langmuir model and linear fitting formula, respectively. The GCMC method is used to obtain the parameters of Langmuir model and linear fitting formula. The multi-scale method overcomes the shortcomings of the saturation adsorption capacities restricted by level of experimentation or empirical formula. The relationship between adsorption heat and adsorption amount is also obtained. The value of adsorption heat is no longer treated as the constant value or obtained from the empirical formula. The effects of velocity, particle size, porosity and thermal conductivity of particle on CO2 adsorption in13X zeolite particle bed are investigated. The results show that the saturation adsorption time decreases with increased velocity, porosity and thermal conductivity of particle, while increases with increased particle size. The peak of temperature difference between the solid and gas phase increases with increased inlet velocity, porosity and particle size, while decreases with thermal conductivity of particle. The temperature difference trends uniformity and the peak of temperature difference moves towards to the outlet of adsorption bed with adsorption time processing. The adsorption bed with a higher inlet velocity, porosity and thermal conductivity of particle, and smaller particle size is recommended to improve the adsorption bed performance.
KW - 13 X zeolite
KW - Adsorption
KW - GCMC
KW - Heat and mass transfer
KW - Temperature difference
UR - http://www.scopus.com/inward/record.url?scp=85063161413&partnerID=8YFLogxK
U2 - 10.1115/IMECE2018-87009
DO - 10.1115/IMECE2018-87009
M3 - 会议稿件
AN - SCOPUS:85063161413
T3 - ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
BT - Heat Transfer and Thermal Engineering
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2018 International Mechanical Engineering Congress and Exposition, IMECE 2018
Y2 - 9 November 2018 through 15 November 2018
ER -