TY - JOUR
T1 - Wear resistance of superior structural WS2-Sb2O3/Cu nanoscale multilayer film
AU - Xu, Shusheng
AU - Zheng, Jianyun
AU - Hao, Junying
AU - Kong, Lianggui
AU - Liu, Weimin
N1 - Publisher Copyright:
© 2016 Elsevier Ltd.
PY - 2016/3/5
Y1 - 2016/3/5
N2 - Transition metal dichalcogenides (TMDs) with layered structure exhibit very low friction coefficient but poor wear resistance in vacuum environments. To develop high wear resistance of WS2 film, its nanostructure was optimized by co-introducing of Sb2O3 dopant and Cu sublayer using sputtering technique. Effects of co-doping on film nano/microstructure, mechanical and tribological performance were investigated by GIXRD, FESEM, HRTEM, nano-indentation tester, AFM, 3D non-contact surface mapping profiler, scratch tester and vacuum ball-on-disk tribometer. The results showed that the growth of WS2 columnar platelets could be restricted by co-introducing of Sb2O3 dopant and thin Cu sublayer (about 1.6 nm), but not single-doping of even 10.0 at.% Sb2O3, leading to formation of amorphous WS2 phase. As compared to the loose WS2-Sb2O3 and pure WS2 films, the dense multilayer films possessed high hardness and high H3/E2, and those maximum values were 6.3 GPa and 2.7 × 10-2 GPa, respectively. The doping 10.0 at.% Sb2O3 could double the film wear life to 2.7 × 105 cycles in vacuum under high Hertzian contact pressure (about 1.0 GPa), and further introduction of Cu sublayer would make the multilayer film much longer wear life about to 1.1 × 106 cycles. Wear mechanisms were discussed in terms of wear track morphology after different sliding cycles.
AB - Transition metal dichalcogenides (TMDs) with layered structure exhibit very low friction coefficient but poor wear resistance in vacuum environments. To develop high wear resistance of WS2 film, its nanostructure was optimized by co-introducing of Sb2O3 dopant and Cu sublayer using sputtering technique. Effects of co-doping on film nano/microstructure, mechanical and tribological performance were investigated by GIXRD, FESEM, HRTEM, nano-indentation tester, AFM, 3D non-contact surface mapping profiler, scratch tester and vacuum ball-on-disk tribometer. The results showed that the growth of WS2 columnar platelets could be restricted by co-introducing of Sb2O3 dopant and thin Cu sublayer (about 1.6 nm), but not single-doping of even 10.0 at.% Sb2O3, leading to formation of amorphous WS2 phase. As compared to the loose WS2-Sb2O3 and pure WS2 films, the dense multilayer films possessed high hardness and high H3/E2, and those maximum values were 6.3 GPa and 2.7 × 10-2 GPa, respectively. The doping 10.0 at.% Sb2O3 could double the film wear life to 2.7 × 105 cycles in vacuum under high Hertzian contact pressure (about 1.0 GPa), and further introduction of Cu sublayer would make the multilayer film much longer wear life about to 1.1 × 106 cycles. Wear mechanisms were discussed in terms of wear track morphology after different sliding cycles.
KW - Cu sublayer
KW - Nanostructure
KW - SbO doping
KW - Wear resistance
KW - WS based film
UR - http://www.scopus.com/inward/record.url?scp=84957837646&partnerID=8YFLogxK
U2 - 10.1016/j.matdes.2016.01.006
DO - 10.1016/j.matdes.2016.01.006
M3 - 文章
AN - SCOPUS:84957837646
SN - 0264-1275
VL - 93
SP - 494
EP - 502
JO - Materials and Design
JF - Materials and Design
ER -