TY - GEN
T1 - Variational bayesian dropout with a hierarchical prior
AU - Liu, Yuhang
AU - Dong, Wenyong
AU - Zhang, Lei
AU - Gong, Dong
AU - Shi, Qinfeng
N1 - Publisher Copyright:
© 2019 IEEE.
PY - 2019/6
Y1 - 2019/6
N2 - Variational dropout (VD) is a generalization of Gaussian dropout, which aims at inferring the posterior of network weights based on a log-uniform prior on them to learn these weights as well as dropout rate simultaneously. The log-uniform prior not only interprets the regularization capacity of Gaussian dropout in network training, but also underpins the inference of such posterior. However, the log-uniform prior is an improper prior (i.e., its integral is infinite), which causes the inference of posterior to be ill-posed, thus restricting the regularization performance of VD. To address this problem, we present a new generalization of Gaussian dropout, termed variational Bayesian dropout (VBD), which turns to exploit a hierarchical prior on the network weights and infer a new joint posterior. Specifically, we implement the hierarchical prior as a zero-mean Gaussian distribution with variance sampled from a uniform hyper-prior. Then, we incorporate such a prior into inferring the joint posterior over network weights and the variance in the hierarchical prior, with which both the network training and dropout rate estimation can be cast into a joint optimization problem. More importantly, the hierarchical prior is a proper prior which enables the inference of posterior to be well-posed. In addition, we further show that the proposed VBD can be seamlessly applied to network compression. Experiments on classification and network compression demonstrate the superior performance of the proposed VBD in regularizing network training.
AB - Variational dropout (VD) is a generalization of Gaussian dropout, which aims at inferring the posterior of network weights based on a log-uniform prior on them to learn these weights as well as dropout rate simultaneously. The log-uniform prior not only interprets the regularization capacity of Gaussian dropout in network training, but also underpins the inference of such posterior. However, the log-uniform prior is an improper prior (i.e., its integral is infinite), which causes the inference of posterior to be ill-posed, thus restricting the regularization performance of VD. To address this problem, we present a new generalization of Gaussian dropout, termed variational Bayesian dropout (VBD), which turns to exploit a hierarchical prior on the network weights and infer a new joint posterior. Specifically, we implement the hierarchical prior as a zero-mean Gaussian distribution with variance sampled from a uniform hyper-prior. Then, we incorporate such a prior into inferring the joint posterior over network weights and the variance in the hierarchical prior, with which both the network training and dropout rate estimation can be cast into a joint optimization problem. More importantly, the hierarchical prior is a proper prior which enables the inference of posterior to be well-posed. In addition, we further show that the proposed VBD can be seamlessly applied to network compression. Experiments on classification and network compression demonstrate the superior performance of the proposed VBD in regularizing network training.
KW - Categorization
KW - Deep Learning
KW - Recognition: Detection
KW - Retrieval
KW - Statistical Learning
UR - http://www.scopus.com/inward/record.url?scp=85075449414&partnerID=8YFLogxK
U2 - 10.1109/CVPR.2019.00729
DO - 10.1109/CVPR.2019.00729
M3 - 会议稿件
AN - SCOPUS:85075449414
T3 - Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
SP - 7117
EP - 7126
BT - Proceedings - 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019
PB - IEEE Computer Society
T2 - 32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019
Y2 - 16 June 2019 through 20 June 2019
ER -