V2VFusion: Multimodal Fusion for Enhanced Vehicle-to-Vehicle Cooperative Perception

Lei Zhang, Binglu Wang, Zhaozhong Wang, Yongqiang Zhao

科研成果: 书/报告/会议事项章节会议稿件同行评审

2 引用 (Scopus)

摘要

Current vehicle-to-vehicle (V2V) research mainly centers on either LiDAR or camera-based perception. Yet, combining data from multiple sensors offers a more complete and precise understanding of the environment. This paper presents V2VFusion, a multimodal perception framework that fuses Li-DAR and camera sensor inputs to improve the performance of V2V systems. Firstly, we implement a baseline system for multi-modal fusion in V2V scenarios, effectively integrating data from LiDAR and camera sensors. This baseline provides a comparable benchmark for subsequent research. Secondly, we explore different fusion strategies, including concatenation, element-wise summation, and transformer methods, to investigate their impact on fusion performance. Lastly, we conduct experiments and evaluation on the OPV2V dataset. The experimental results demonstrate that the multimodal perception method achieves better performance and robustness in V2V tasks, providing more accurate object detection results, thereby improving the safety and reliability of autonomous driving systems.

源语言英语
主期刊名Proceedings - 2023 China Automation Congress, CAC 2023
出版商Institute of Electrical and Electronics Engineers Inc.
3691-3696
页数6
ISBN(电子版)9798350303759
DOI
出版状态已出版 - 2023
活动2023 China Automation Congress, CAC 2023 - Chongqing, 中国
期限: 17 11月 202319 11月 2023

出版系列

姓名Proceedings - 2023 China Automation Congress, CAC 2023

会议

会议2023 China Automation Congress, CAC 2023
国家/地区中国
Chongqing
时期17/11/2319/11/23

指纹

探究 'V2VFusion: Multimodal Fusion for Enhanced Vehicle-to-Vehicle Cooperative Perception' 的科研主题。它们共同构成独一无二的指纹。

引用此