Unifying Feature Space from Heterogeneous Images for Unsupervised Change Detection

Zuowei Zhang, Chuanqi Liu, Fan Hao, Zhunga Liu

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

Domain transformation is playing an increasingly important role in heterogeneous change detection. Existent methods, however, cannot guarantee the consistency of reconstructed feature spaces. To solve this issue, we propose an unsupervised change detection method based on the unification of feature space (UFS). First, we construct a convolutional autoencoder based on adaptive instance normalization to unify feature space. Then, we use fuzzy local information c-means to reduce the over-reliance on reconstructed features. Finally, we design a dynamic superpixel-based label assignment (DSLA) rule to increase the number of reliable pseudo-labels used to learn a binary classifier to obtain the CD results. Experimental results on heterogeneous datasets demonstrate the effectiveness of UFS.

源语言英语
主期刊名Proceedings - 2023 China Automation Congress, CAC 2023
出版商Institute of Electrical and Electronics Engineers Inc.
8829-8834
页数6
ISBN(电子版)9798350303759
DOI
出版状态已出版 - 2023
活动2023 China Automation Congress, CAC 2023 - Chongqing, 中国
期限: 17 11月 202319 11月 2023

出版系列

姓名Proceedings - 2023 China Automation Congress, CAC 2023

会议

会议2023 China Automation Congress, CAC 2023
国家/地区中国
Chongqing
时期17/11/2319/11/23

指纹

探究 'Unifying Feature Space from Heterogeneous Images for Unsupervised Change Detection' 的科研主题。它们共同构成独一无二的指纹。

引用此