Ultra-stable dendrite-free Na and Li metal anodes enabled by tin selenide host material

Yikun Wang, Ting Li, Bofeng Chen, Haiyang Jin, Shuangyan Qiao, Qianwen Zhou, Meng Ma, Yifang Wu, Shaokun Chong

科研成果: 期刊稿件文章同行评审

4 引用 (Scopus)

摘要

Lithium/sodium metal anodes are considered promising candidates to realize high-energy–density batteries because of their high theoretical specific capacity and low potential. However, their cycling stability are hindered by uncontrolled dendrites growth. Herein, SnSe nanoparticles are tightly anchored on the fiber of carbon cloth (CC) to construct SnSe@CC host material in order to control Li/Na nucleation behavior and restrain dendrites growth. It is demonstrated that the alloying product of Li15Sn4/Na15Sn4 with strong metal affinity can provide abundant active nucleation sites, and three-dimensional structure of CC host can significantly decrease the local electric current, thereby guiding homogeneous metal deposition without Li and Na dendrites. Meanwhile, the conversion product of Li2Se/Na2Se will uniformly cover on the surface of metal to serve as ultra-stable solid state interface film. As a result, high-capacity Li metal anode (20 mAh·cm−2) and Na metal anode (10 mAh·cm−2) can work steadily with ultra-long lifespans over 5000 and 6000 h with low overpotentials of 7 mV and 141 mV, respectively. Moreover, the assembled Li and Na metal full batteries exhibit superior electrochemical performances, confirming the practicability of metal anode confined in composite host. Such a strategy of conversion-alloying-type materials as hosts opens up a new path for dendrite-free metal anode electrode.

源语言英语
页(从-至)885-895
页数11
期刊Journal of Colloid and Interface Science
660
DOI
出版状态已出版 - 15 4月 2024

指纹

探究 'Ultra-stable dendrite-free Na and Li metal anodes enabled by tin selenide host material' 的科研主题。它们共同构成独一无二的指纹。

引用此