Turán Numbers for Vertex-disjoint Triangles and Pentagons

Fangfang Wu, Hajo Broersma, Shenggui Zhang, Binlong Li

科研成果: 期刊稿件文章同行评审

摘要

The Turán number, denoted by ex (n, H), is the maximum number of edges of a graph on n vertices containing no graph H as a subgraph. Denote by kC the union of k vertex-disjoint copies of C. In this paper, we present new results for the Turán numbers of vertex-disjoint cycles. Our first results deal with the Turán number of vertex-disjoint triangles ex (n, kC3). We determine the Turán number ex(n, kC3) for n≥k2+5k2 when k ≤ 4, and n ≥ k2 + 2 when k ≥ 4. Moreover, we give lower and upper bounds for ex (n, kC3) with 3k≤n≤k2+5k2 when k ≤ 4, and 3k ≤ n ≤ k2 + 2 when k ≥ 4. Next, we give a lower bound for the Turán number of vertex-disjoint pentagons ex (n, kC5). Finally, we determine the Turán number ex (n, kC5) for n = 5k, and propose two conjectures for ex (n, kC5) for the other values of n.

源语言英语
页(从-至)1181-1195
页数15
期刊Acta Mathematica Sinica, English Series
41
4
DOI
出版状态已出版 - 4月 2025

指纹

探究 'Turán Numbers for Vertex-disjoint Triangles and Pentagons' 的科研主题。它们共同构成独一无二的指纹。

引用此