TY - JOUR
T1 - Transonic limit cycle oscillation behavior of an aeroelastic airfoil with free-play
AU - Yang, Zhichun
AU - He, Shun
AU - Gu, Yingsong
N1 - Publisher Copyright:
© 2016 Elsevier Ltd
PY - 2016/10/1
Y1 - 2016/10/1
N2 - The limit cycle oscillation (LCO) behaviors of an aeroelastic airfoil with free-play for different Mach numbers are studied. Euler equations are adopted to obtain the unsteady aerodynamic forces. Aerodynamic and structural describing functions are employed to deal with aerodynamic and structural nonlinearities, respectively. Then the flutter speed and flutter frequency are obtained by V-g method. The LCO solutions for the aeroelastic airfoil obtained by using dynamically linear aerodynamics agree well with those obtained directly by using nonlinear aerodynamics. Subsequently, the dynamically linear aerodynamics is assumed, and results show that the LCOs behave variously in different Mach number ranges. A subcritical bifurcation, consisting of both stable and unstable branches, is firstly observed in subsonic and high subsonic regime. Then in a narrow Mach number range, the unstable LCOs with small amplitudes turn to be stable ones dominated by the single degree of freedom flutter. Meanwhile, these LCOs can persist down to very low flutter speeds. When the Mach number is increased further, the stable branch turns back to be unstable. To address the reason of the stability variation for different Mach numbers at small amplitude LCOs, we find that the Mach number freeze phenomenon provides a physics-based explanation and the phase reversal of the aerodynamic forces will trigger the single degree of freedom flutter in the narrow Mach number range between the low and high Mach numbers of the chimney region. The high Mach number can be predicted by the freeze Mach number, and the low one can be estimated by the Mach number at which the aerodynamic center of the airfoil lies near its elastic axis. Influence of angle of attack and viscous effects on the LCO behavior is also discussed.
AB - The limit cycle oscillation (LCO) behaviors of an aeroelastic airfoil with free-play for different Mach numbers are studied. Euler equations are adopted to obtain the unsteady aerodynamic forces. Aerodynamic and structural describing functions are employed to deal with aerodynamic and structural nonlinearities, respectively. Then the flutter speed and flutter frequency are obtained by V-g method. The LCO solutions for the aeroelastic airfoil obtained by using dynamically linear aerodynamics agree well with those obtained directly by using nonlinear aerodynamics. Subsequently, the dynamically linear aerodynamics is assumed, and results show that the LCOs behave variously in different Mach number ranges. A subcritical bifurcation, consisting of both stable and unstable branches, is firstly observed in subsonic and high subsonic regime. Then in a narrow Mach number range, the unstable LCOs with small amplitudes turn to be stable ones dominated by the single degree of freedom flutter. Meanwhile, these LCOs can persist down to very low flutter speeds. When the Mach number is increased further, the stable branch turns back to be unstable. To address the reason of the stability variation for different Mach numbers at small amplitude LCOs, we find that the Mach number freeze phenomenon provides a physics-based explanation and the phase reversal of the aerodynamic forces will trigger the single degree of freedom flutter in the narrow Mach number range between the low and high Mach numbers of the chimney region. The high Mach number can be predicted by the freeze Mach number, and the low one can be estimated by the Mach number at which the aerodynamic center of the airfoil lies near its elastic axis. Influence of angle of attack and viscous effects on the LCO behavior is also discussed.
KW - Aerodynamic nonlinearity
KW - Free-play
KW - Limit cycle oscillation
KW - Transonic flow
KW - Transonic flutter
UR - http://www.scopus.com/inward/record.url?scp=84979711081&partnerID=8YFLogxK
U2 - 10.1016/j.jfluidstructs.2016.07.013
DO - 10.1016/j.jfluidstructs.2016.07.013
M3 - 文章
AN - SCOPUS:84979711081
SN - 0889-9746
VL - 66
SP - 1
EP - 18
JO - Journal of Fluids and Structures
JF - Journal of Fluids and Structures
ER -