Transforming Monolayer Transition-Metal Dichalcogenide Nanosheets into One-Dimensional Nanoscrolls with High Photosensitivity

Xiangru Fang, Pei Wei, Lin Wang, Xiaoshan Wang, Bo Chen, Qiyuan He, Qiuyan Yue, Jindong Zhang, Weihao Zhao, Jialiang Wang, Gang Lu, Hua Zhang, Wei Huang, Xiao Huang, Hai Li

科研成果: 期刊稿件文章同行评审

58 引用 (Scopus)

摘要

One-dimensional (1D) nanoscrolls derived from two-dimensional (2D) nanosheets own unusual physical and chemical properties that arise from the spiraled 1D morphology and the atomic thin 2D building blocks. Unfortunately, preparation of large-sized nanoscrolls of transition-metal dichalcogenides (TMDCs) remains a big challenge, which greatly restricts the fabrication of single-scroll devices for their fundamental studies and further applications. In this work, we report a universal and facile method, by making use of the evaporation process of volatile organic solvent, to prepare TMDC (e.g., MoS2 and WS2) nanoscrolls with lengths of several tens to one hundred micrometers from their 2D precursors presynthesized by chemical vapor deposition on Si/SiO2. Both atomic force microscopy and electron microscopy characterizations confirmed the spirally rolledup structure in the resulting nanoscrolls. An interlayer spacing of as small as ∼0.65 nm was observed, suggesting the strong coupling between adjacent layers, which was further evidenced by the emergence of new breathing mode peaks in the ultralow frequency Raman spectrum. Importantly, compared with the photodetector fabricated from a monolayer MoS2 or WS2 nanosheet, the device based on an MoS2 or WS2 nanoscroll showed the much enhanced performance, respectively, with the photosensitivity greatly increased up to 2 orders of magnitude. Our work suggests that turning 2D TMDCs into 1D scrolls is promising in achieving high performances in various electronic/optoelectronic applications, and our general method can be extended to the preparation of large-sized nanoscrolls of other kinds of 2D materials that may bring about new properties and phenomena.

源语言英语
页(从-至)13011-13018
页数8
期刊ACS Applied Materials and Interfaces
10
15
DOI
出版状态已出版 - 18 4月 2018

指纹

探究 'Transforming Monolayer Transition-Metal Dichalcogenide Nanosheets into One-Dimensional Nanoscrolls with High Photosensitivity' 的科研主题。它们共同构成独一无二的指纹。

引用此