Transformer-Based Annotation Bias-Aware Medical Image Segmentation

Zehui Liao, Shishuai Hu, Yutong Xie, Yong Xia

科研成果: 书/报告/会议事项章节会议稿件同行评审

9 引用 (Scopus)

摘要

Manual medical image segmentation is subjective and suffers from annotator-related bias, which can be mimicked or amplified by deep learning methods. Recently, researchers have suggested that such bias is the combination of the annotator preference and stochastic error, which are modeled by convolution blocks located after decoder and pixel-wise independent Gaussian distribution, respectively. It is unlikely that convolution blocks can effectively model the varying degrees of preference at the full resolution level. Additionally, the independent pixel-wise Gaussian distribution disregards pixel correlations, leading to a discontinuous boundary. This paper proposes a Transformer-based Annotation Bias-aware (TAB) medical image segmentation model, which tackles the annotator-related bias via modeling annotator preference and stochastic errors. TAB employs the Transformer with learnable queries to extract the different preference-focused features. This enables TAB to produce segmentation with various preferences simultaneously using a single segmentation head. Moreover, TAB takes the multivariant normal distribution assumption that models pixel correlations, and learns the annotation distribution to disentangle the stochastic error. We evaluated our TAB on an OD/OC segmentation benchmark annotated by six annotators. Our results suggest that TAB outperforms existing medical image segmentation models which take into account the annotator-related bias. The code is available at https://github.com/Merrical/TAB.

源语言英语
主期刊名Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 - 26th International Conference, Proceedings
编辑Hayit Greenspan, Hayit Greenspan, Anant Madabhushi, Parvin Mousavi, Septimiu Salcudean, James Duncan, Tanveer Syeda-Mahmood, Russell Taylor
出版商Springer Science and Business Media Deutschland GmbH
24-34
页数11
ISBN(印刷版)9783031439001
DOI
出版状态已出版 - 2023
活动26th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2023 - Vancouver, 加拿大
期限: 8 10月 202312 10月 2023

出版系列

姓名Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
14223 LNCS
ISSN(印刷版)0302-9743
ISSN(电子版)1611-3349

会议

会议26th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2023
国家/地区加拿大
Vancouver
时期8/10/2312/10/23

指纹

探究 'Transformer-Based Annotation Bias-Aware Medical Image Segmentation' 的科研主题。它们共同构成独一无二的指纹。

引用此