TY - GEN
T1 - Transductive Learning for BI-RADS Knowledge Graph based on Knowledge Tensor Factorization
AU - Xi, Jianing
AU - Miao, Zhaoji
AU - Huang, Qinghua
N1 - Publisher Copyright:
© 2021 IEEE.
PY - 2021
Y1 - 2021
N2 - The advantage of Knowledge Graph (KG) can greatly prompt the interpretability of the artificial intelligence diagnosis. For breast ultrasound, the KG can be built through BI-RADS semantic descriptions, and the diagnosis can be achieved by link reconstruction between patients and outcomes. However, the existing KG analysis methods consider only the linked neighbors of the entities and relations during embedding, but not the whole entities and relations in KG, which reduces the link reconstruction power for diagnosis in the case of only a small fraction of labeled patients. In this paper, we present a transductive learning based Knowledge Tensor Factorization (KTF) method, which can effectively represent the KG data through a core tensor of interactions among all entities and relations and their embedding vectors. KTF demonstrates distinct diagnosis performance even if there is only a small fraction of labeled patients. Through experiments of assessments, KTF shows distinct superior performance in diagnosis for KG data of BI-RADS with a small fraction of known outcomes of patients.
AB - The advantage of Knowledge Graph (KG) can greatly prompt the interpretability of the artificial intelligence diagnosis. For breast ultrasound, the KG can be built through BI-RADS semantic descriptions, and the diagnosis can be achieved by link reconstruction between patients and outcomes. However, the existing KG analysis methods consider only the linked neighbors of the entities and relations during embedding, but not the whole entities and relations in KG, which reduces the link reconstruction power for diagnosis in the case of only a small fraction of labeled patients. In this paper, we present a transductive learning based Knowledge Tensor Factorization (KTF) method, which can effectively represent the KG data through a core tensor of interactions among all entities and relations and their embedding vectors. KTF demonstrates distinct diagnosis performance even if there is only a small fraction of labeled patients. Through experiments of assessments, KTF shows distinct superior performance in diagnosis for KG data of BI-RADS with a small fraction of known outcomes of patients.
UR - http://www.scopus.com/inward/record.url?scp=85123493018&partnerID=8YFLogxK
U2 - 10.1109/CISP-BMEI53629.2021.9624217
DO - 10.1109/CISP-BMEI53629.2021.9624217
M3 - 会议稿件
AN - SCOPUS:85123493018
T3 - Proceedings - 2021 14th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics, CISP-BMEI 2021
BT - Proceedings - 2021 14th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics, CISP-BMEI 2021
A2 - Li, Qingli
A2 - Wang, Lipo
A2 - Wang, Yan
A2 - Li, Wenwu
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 14th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics, CISP-BMEI 2021
Y2 - 23 October 2021 through 25 October 2021
ER -