TY - JOUR
T1 - Toward durable all-inorganic perovskite solar cells
T2 - from lead-based to lead-free
AU - Xu, Hongzhe
AU - Guo, Zhaochen
AU - Chen, Peng
AU - Wang, Songcan
N1 - Publisher Copyright:
© 2024 The Royal Society of Chemistry.
PY - 2024/9/23
Y1 - 2024/9/23
N2 - Organic-inorganic metal halide perovskite solar cells (PSCs) have attracted extensive attention from the photovoltaic (PV) community due to their fast-growing power conversion efficiency from 3.8% to 26.7% in only 15 years. However, these organic-inorganic hybrid PSCs suffer from inferior long-term operational stability under thermal and light stress, due to the fragile hydrogen bonds between organic cations and inorganic slabs. This motivates the exploration of more robust all-inorganic alternatives against external stimuli, by substituting inorganic cesium (Cs) cations for volatile organic cations. Despite reinforced ionic interaction between Cs cations and metal halide frameworks, these Cs-based all-inorganic perovskites tend to undergo spontaneous phase transition from photoactive black phases to non-perovskite yellow phases at room temperature, significantly deteriorating their optoelectronic performance. Thus, tremendous efforts have been made to stabilize the black phase of CsPbI3, while the phase instability issue of the tin-based analogue of CsSnI3 has not been resolved yet. This highlight article summarizes the empirical advances in stabilizing the metastable phases of CsPbI3, aiming to provide useful guidelines to accelerate the development of phase-stable CsSnI3 for durable lead-free PV applications. Finally, the remaining challenges and future research opportunities are outlined, providing a road map to realize efficient and durable all-inorganic perovskite solar cells towards practical applications.
AB - Organic-inorganic metal halide perovskite solar cells (PSCs) have attracted extensive attention from the photovoltaic (PV) community due to their fast-growing power conversion efficiency from 3.8% to 26.7% in only 15 years. However, these organic-inorganic hybrid PSCs suffer from inferior long-term operational stability under thermal and light stress, due to the fragile hydrogen bonds between organic cations and inorganic slabs. This motivates the exploration of more robust all-inorganic alternatives against external stimuli, by substituting inorganic cesium (Cs) cations for volatile organic cations. Despite reinforced ionic interaction between Cs cations and metal halide frameworks, these Cs-based all-inorganic perovskites tend to undergo spontaneous phase transition from photoactive black phases to non-perovskite yellow phases at room temperature, significantly deteriorating their optoelectronic performance. Thus, tremendous efforts have been made to stabilize the black phase of CsPbI3, while the phase instability issue of the tin-based analogue of CsSnI3 has not been resolved yet. This highlight article summarizes the empirical advances in stabilizing the metastable phases of CsPbI3, aiming to provide useful guidelines to accelerate the development of phase-stable CsSnI3 for durable lead-free PV applications. Finally, the remaining challenges and future research opportunities are outlined, providing a road map to realize efficient and durable all-inorganic perovskite solar cells towards practical applications.
UR - http://www.scopus.com/inward/record.url?scp=85207598473&partnerID=8YFLogxK
U2 - 10.1039/d4cc04000g
DO - 10.1039/d4cc04000g
M3 - 文献综述
C2 - 39356171
AN - SCOPUS:85207598473
SN - 1359-7345
VL - 60
SP - 12287
EP - 12301
JO - Chemical Communications
JF - Chemical Communications
IS - 85
ER -