Topological Similarity between Artificial and Biological Neural Networks

Yu Du, Liting Wang, Lei Guo, Junwei Han, Tianming Liu, Xintao Hu

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

Inspired by biological neural networks (BNNs), deep artificial neural networks (ANNs) have largely reshaped artificial intelligence nowadays. Neural encoding and decoding studies have shown how and to what extent the information representation in ANNs functionally resembles the brains. Meanwhile, researchers start to investigate how ANNs' predictive performance relates to their topological structures by building relational graphs of computational ANNs. These studies bring the opportunity to assess how is the structural organization of ANNs analogous to BNNs. However, further efforts are necessary to answer this question as the graphical metrics and BNNs are limited in previous studies. In this study, we evaluate the topological similarities between several representative ANNs and a battery of BNNs in different species using a rich set of graphical metrics. We sought to answer two questions: 1) What are the appropriate graphical metrics to characterize the topological similarity between ANNs and BNNs? 2) Is the evolution of ANNs analogous to that of BNNs? Our results show that: 1) the ANN-BNN topological similarity patterns are distinguishable in several graphical metrics; 2) The evolution of ANNs to some extent is analogous to that of BNNs. These findings may provide novel clues for designing brain-inspired neural architectures.

源语言英语
主期刊名2023 IEEE International Symposium on Biomedical Imaging, ISBI 2023
出版商IEEE Computer Society
ISBN(电子版)9781665473583
DOI
出版状态已出版 - 2023
活动20th IEEE International Symposium on Biomedical Imaging, ISBI 2023 - Cartagena, 哥伦比亚
期限: 18 4月 202321 4月 2023

出版系列

姓名Proceedings - International Symposium on Biomedical Imaging
2023-April
ISSN(印刷版)1945-7928
ISSN(电子版)1945-8452

会议

会议20th IEEE International Symposium on Biomedical Imaging, ISBI 2023
国家/地区哥伦比亚
Cartagena
时期18/04/2321/04/23

指纹

探究 'Topological Similarity between Artificial and Biological Neural Networks' 的科研主题。它们共同构成独一无二的指纹。

引用此