TY - JOUR
T1 - Time-dependent reliability-based design optimization with probabilistic and interval uncertainties
AU - Shi, Yan
AU - Lu, Zhenzhou
AU - Huang, Zhiliang
N1 - Publisher Copyright:
© 2019 Elsevier Inc.
PY - 2020/4
Y1 - 2020/4
N2 - Time-dependent reliability-based design optimization with both probabilistic and interval uncertainties is a cost-consuming problem in engineering practice which generally needs huge computational burden. In order to deal with this issue, a sequential single-loop optimization strategy is established in this work. The established sequential single-loop optimization strategy converts the original triple-loop optimization into a sequence of deterministic optimization, the estimations of time instant and interval value that corresponding to the worst case scenario, and the minimum performance target point searching. Two key points in the sequential single-loop optimization strategy guarantee the high efficiency of the proposed strategy. One is that no iterative searching step is needed to find the minimum performance target point at each iteration in the proposed sequential single-loop optimization strategy. The other is that only the correction step needs the reliability analysis to correct the design parameter solutions. In the example section, four minimum performance target point searching techniques are combined with the sequential single-loop optimization strategy to solve the corresponding optimization problems so to illustrate the effectiveness of the established strategy.
AB - Time-dependent reliability-based design optimization with both probabilistic and interval uncertainties is a cost-consuming problem in engineering practice which generally needs huge computational burden. In order to deal with this issue, a sequential single-loop optimization strategy is established in this work. The established sequential single-loop optimization strategy converts the original triple-loop optimization into a sequence of deterministic optimization, the estimations of time instant and interval value that corresponding to the worst case scenario, and the minimum performance target point searching. Two key points in the sequential single-loop optimization strategy guarantee the high efficiency of the proposed strategy. One is that no iterative searching step is needed to find the minimum performance target point at each iteration in the proposed sequential single-loop optimization strategy. The other is that only the correction step needs the reliability analysis to correct the design parameter solutions. In the example section, four minimum performance target point searching techniques are combined with the sequential single-loop optimization strategy to solve the corresponding optimization problems so to illustrate the effectiveness of the established strategy.
KW - Minimum performance target point searching
KW - Probabilistic and interval uncertainties
KW - Sequential single-loop optimization
KW - Time-dependent reliability-based design optimization
KW - Worst case scenario
UR - http://www.scopus.com/inward/record.url?scp=85076243149&partnerID=8YFLogxK
U2 - 10.1016/j.apm.2019.11.044
DO - 10.1016/j.apm.2019.11.044
M3 - 文章
AN - SCOPUS:85076243149
SN - 0307-904X
VL - 80
SP - 268
EP - 289
JO - Applied Mathematical Modelling
JF - Applied Mathematical Modelling
ER -