Thermally Conductive but Electrically Insulating Polybenzazole Nanofiber/Boron Nitride Nanosheets Nanocomposite Paper for Heat Dissipation of 5G Base Stations and Transformers

Yu Chen, Honggang Zhang, Jie Chen, Yiting Guo, Pingkai Jiang, Feng Gao, Hua Bao, Xingyi Huang

科研成果: 期刊稿件文章同行评审

112 引用 (Scopus)

摘要

The rapid development of 5G equipment and high-power density electronic devices calls for high thermal conductivity materials for heat dissipation. Dielectric polymer composites are highly promising as the electrical insulation, mechanical property, thermal stability, and even fire retardance are also of great importance for electrical and electronic applications. However, the current thermal conductivity enhancement of dielectric polymer composites is usually at the cost of lowering the mechanical and electrical insulating properties. In this work, we report the facile preparation of highly thermally conductive and electrically insulating poly(p-phenylene benzobisoxazole) nanofiber (PBONF) composites by incorporating a low weight fraction of functionalized boron nitride nanosheets (BNNSs). With strong electrostatic interaction, the BNNSs are encapsulated by PBONFs, and the constructed robust interconnected network makes the nanocomposites exhibit a nacre-like structure. Accordingly, the nanocomposite paper has a high in-plane thermal conductivity of 21.34 W m-1 K-1 at a low loading of 10 wt % BNNSs and exhibits an ultrahigh strength of 206 MPa. Additionally, the nanocomposite paper exhibits superior electrical insulation properties up to higher than 350 °C and excellent fire retardance. The strong heat dissipation capability of the nanocomposite paper was demonstrated in 5G base stations and control transformers, showing wide potential applications in high power density electrical equipment and electronic devices.

源语言英语
页(从-至)14323-14333
页数11
期刊ACS Nano
16
9
DOI
出版状态已出版 - 27 9月 2022

指纹

探究 'Thermally Conductive but Electrically Insulating Polybenzazole Nanofiber/Boron Nitride Nanosheets Nanocomposite Paper for Heat Dissipation of 5G Base Stations and Transformers' 的科研主题。它们共同构成独一无二的指纹。

引用此