摘要
Let G be a graph with n vertices and L(G) its Laplacian matrix. Define ρG=[formula presented]L(G) to be the density matrix of G, where dG denotes the sum of degrees of all vertices of G. Let λ1,λ2,…,λn be the eigenvalues of ρG. The von Neumann entropy of G is defined as S(G)=−∑i=1nλilog2λi. In this paper, we establish a lower bound and an upper bound to the von Neumann entropy for random multipartite graphs.
源语言 | 英语 |
---|---|
页(从-至) | 201-206 |
页数 | 6 |
期刊 | Discrete Applied Mathematics |
卷 | 232 |
DOI | |
出版状态 | 已出版 - 11 12月 2017 |