The Ninth NTIRE 2024 Efficient Super-Resolution Challenge Report

Bin Ren, Yawei Li, Nancy Mehta, Radu Timofte, Hongyuan Yu, Cheng Wan, Yuxin Hong, Bingnan Han, Zhuoyuan Wu, Yajun Zou, Yuqing Liu, Jizhe Li, Keji He, Chao Fan, Heng Zhang, Xiaolin Zhang, Xuanwu Yin, Kunlong Zuo, Bohao Liao, Peizhe XiaLong Peng, Zhibo Du, Xin Di, Wangkai Li, Yang Wang, Wei Zhai, Renjing Pei, Jiaming Guo, Songcen Xu, Yang Cao, Zhengjun Zha, Yi Liu, Qing Wang, Gang Zhang, Liou Zhang, Shijie Zhao, Long Sun, Jinshan Pan, Jiangxin Dong, Jinhui Tang, Xin Liu, Min Yan, Menghan Zhou, Yiqiang Yan, Yixuan Liu, Wensong Chan, Dehua Tang, Dong Zhou, Li Wang, Lu Tian, Barsoum Emad, Bohan Jia, Junbo Qiao, Yunshuai Zhou, Yun Zhang, Wei Li, Shaohui Lin, Shenglong Zhou, Binbin Chen, Jincheng Liao, Suiyi Zhao, Zhao Zhang, Bo Wang, Yan Luo, Yanyan Wei, Feng Li, Mingshen Wang, Jinhan Guan, Dehua Hu, Jiawei Yu, Qisheng Xu, Tao Sun, Long Lan, Kele Xu, Xin Lin, Jingtong Yue, Lehan Yang, Shiyi Du, Lu Qi, Chao Ren, Zeyu Han, Yuhan Wang, Chaolin Chen, Haobo Li, Mingjun Zheng, Zhongbao Yang, Lianhong Song, Xingzhuo Yan, Minghan Fu, Jingyi Zhang, Baiang Li, Qi Zhu, Xiaogang Xu, Dan Guo, Chunle Guo, Jiadi Chen, Huanhuan Long, Chunjiang Duanmu, Xiaoyan Lei, Jie Liu, Weilin Jia, Weifeng Cao, Wenlong Zhang, Yanyu Mao, Ruilong Guo, Nihao Zhang, Qian Wang, Manoj Pandey, Maksym Chernozhukov, Giang Le, Shuli Cheng, Hongyuan Wang, Ziyan Wei, Qingting Tang, Liejun Wang, Yongming Li, Yanhui Guo, Hao Xu, Akram Khatami-Rizi, Ahmad Mahmoudi-Aznaveh, Chih Chung Hsu, Chia Ming Lee, Yi Shiuan Chou, Amogh Joshi, Nikhil Akalwadi, Sampada Malagi, Palani Yashaswini, Chaitra Desai, Ramesh Ashok Tabib, Ujwala Patil, Uma Mudenagudi

科研成果: 书/报告/会议事项章节会议稿件同行评审

23 引用 (Scopus)

摘要

This paper provides a comprehensive review of the NTIRE 2024 challenge, focusing on efficient single-image super-resolution (ESR) solutions and their outcomes. The task of this challenge is to super-resolve an input image with a magnification factor of ×4 based on pairs of low and corresponding high-resolution images. The primary objective is to develop networks that optimize various aspects such as runtime, parameters, and FLOPs, while still maintaining a peak signal-to-noise ratio (PSNR) of approximately 26.90 dB on the DIV2K LSDIR valid dataset and 26.99 dB on the DIV2K LSDIR test dataset. In addition, this challenge has 4 tracks including the main track (overall performance), sub-track 1 (runtime), sub-track 2 (FLOPs), and sub-track 3 (parameters). In the main track, all three metrics (i.e., runtime, FLOPs, and parameter count) were considered. The ranking of the main track is calculated based on a weighted sum-up of the scores of all other sub-tracks. In sub-track 1, the practical runtime performance of the submissions was evaluated, and the corresponding score was used to determine the ranking. In sub-track 2, the number of FLOPs was considered. The score calculated based on the corresponding FLOPs was used to determine the ranking. In sub-track 3, the number of parameters was considered. The score calculated based on the corresponding parameters was used to determine the ranking. RLFN is set as the baseline for efficiency measurement. The challenge had 262 registered participants, and 34 teams made valid submissions. They gauge the state-of-the-art in efficient single-image super-resolution. To facilitate the reproducibility of the challenge and enable other researchers to build upon these findings, the code and the pre-trained model of validated solutions are made publicly available at https://github.com/Amazingren/NTIRE2024-ESR/.

源语言英语
主期刊名Proceedings - 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2024
出版商IEEE Computer Society
6595-6631
页数37
ISBN(电子版)9798350365474
DOI
出版状态已出版 - 2024
活动2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2024 - Seattle, 美国
期限: 16 6月 202422 6月 2024

出版系列

姓名IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
ISSN(印刷版)2160-7508
ISSN(电子版)2160-7516

会议

会议2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2024
国家/地区美国
Seattle
时期16/06/2422/06/24

指纹

探究 'The Ninth NTIRE 2024 Efficient Super-Resolution Challenge Report' 的科研主题。它们共同构成独一无二的指纹。

引用此