摘要
Existing detection methods have mismatch problem when applyed to the real uncertain ocean, which will lead to the detection performance degradation. However, there has been little work on defining the practical quantitative measures of environmental sensitivity. In this article we define a measure of environmental sensitivity for target detection performance loss in an uncertain ocean for realistic uncertainties in various environmental parameters (water-column sound speed profile and seabed geoacoustic properties). The Monte Carlo approach is used to transfer the environment uncertainty through the forward problem and quantify the resulting variability in the detection performance loss. The computer simulation is based on the Malta Plateau, a well-studied shallow-water region of the Mediterranean Sea. The simulation result shows that 1) the sensitivity is range and depth dependent and in the sound channel the sensitivity is much smaller than in other regions of the ocean; 2) the sound speed profile and the upper seabed layer are most sensitive parameters for the detection performance loss; 3) the sensitivity is frequency dependent. The seabed layer properties such as sediment thickness, density and attenuation coefficient have less influence on the detection as the frequency increases.
源语言 | 英语 |
---|---|
文章编号 | 064303 |
期刊 | Wuli Xuebao/Acta Physica Sinica |
卷 | 62 |
期 | 6 |
DOI | |
出版状态 | 已出版 - 20 3月 2013 |