The global optimization of space exploration trajectory design based on differential evolution algorithm

Renyong Zhang, Jianjun Luo, Yu Cheng, Geshi Tang, Jing Cao, Erlong Su, Jinglang Feng

科研成果: 期刊稿件文章同行评审

5 引用 (Scopus)

摘要

In this paper, a new global optimization method is proposed to solve the multi-target space exploration trajectory design problem. The variables of targets selection, visiting sequences and launch windows are synchronously optimized. In the context of two-body model in which the central gravity of the sun is only considered with the thrust as impulse, the patched-conic method accompanied with differential evolution (DE) algorithm are applied to solve the global optimization trajectory design problem. Then the method is utilized to solve the problem of the Third National Design Competition for Deep Space Exploration and the example missions of the ACT of ESA. It proves that the global trajectory optimization design method is feasible and valuable for the problem of multi-target and multi-mission space trajectory design.

源语言英语
页(从-至)1079-1083
页数5
期刊Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics
44
6
DOI
出版状态已出版 - 11月 2012

指纹

探究 'The global optimization of space exploration trajectory design based on differential evolution algorithm' 的科研主题。它们共同构成独一无二的指纹。

引用此