TY - JOUR
T1 - The effects of deformation parameters and cooling rates on the aging behavior of AZ80+0.4%Ce
AU - Yang, Yongbiao
AU - Guo, Jinxuan
AU - Wang, Cuiying
AU - Zhang, Ting Yan
AU - Jiang, Wenxuan
AU - Zhang, Zhimin
AU - Wang, Qiang
AU - Li, Guojun
AU - Wang, Jun
N1 - Publisher Copyright:
© 2022
PY - 2024/2
Y1 - 2024/2
N2 - The extruded AZ80+0.4% Ce magnesium alloy was twisted in the temperature range of 300 - 380 °C by using a Gleeble 3500 thermal simulation test machine with a torsion unit. The deformed cylindrical specimens were cooled at a cooling rate of 10 °C/s or 0.1 °C/s, respectively, and aged at 170 °C. The microstructure analysis results showed that the grain size decreased with increasing specimen radial position from center (SRPC), and that the strong initial basal texture of the extruded magnesium alloy was weakened. Both continuous and discontinuous dynamic recrystallization mechanisms were involved in contributing to the grain refinement for all specimens investigated. And a novel extension twinning induced dynamic recrystallization mechanism was proposed for specimen deformed at 300 °C. For the specimens deformed at 300 °C and 340 °C followed by a slow cooling rate (0.1 °C/s), precipitates of various shapes (β-Mg17Al12), with the dominant precipitates being on the grains boundaries, appeared on the surface section. For specimen deformed at 380 °C, lamellar precipitates (LPS) in the interiors of the grains were predominant. After aging, the LPS still dominated for specimens twisted at 380 °C; however, the LPS gradually decreased with decreasing deformation temperatures from 380 °C to 300 °C. Dynamically precipitated β, especially those decorating the grain boundaries, changed the competition pictures for the LPS and precipitates of other shapes after aging. Interestingly, LPS dominated the areas for the center section of the specimens after aging regardless of deformation temperatures. Low temperature deformation with high SRPC followed by rapid cooling rate increased the micro hardness of the alloy after aging due to refined grain, reduced precipitates size, decreased lamellar spacing as well as strain hardening.
AB - The extruded AZ80+0.4% Ce magnesium alloy was twisted in the temperature range of 300 - 380 °C by using a Gleeble 3500 thermal simulation test machine with a torsion unit. The deformed cylindrical specimens were cooled at a cooling rate of 10 °C/s or 0.1 °C/s, respectively, and aged at 170 °C. The microstructure analysis results showed that the grain size decreased with increasing specimen radial position from center (SRPC), and that the strong initial basal texture of the extruded magnesium alloy was weakened. Both continuous and discontinuous dynamic recrystallization mechanisms were involved in contributing to the grain refinement for all specimens investigated. And a novel extension twinning induced dynamic recrystallization mechanism was proposed for specimen deformed at 300 °C. For the specimens deformed at 300 °C and 340 °C followed by a slow cooling rate (0.1 °C/s), precipitates of various shapes (β-Mg17Al12), with the dominant precipitates being on the grains boundaries, appeared on the surface section. For specimen deformed at 380 °C, lamellar precipitates (LPS) in the interiors of the grains were predominant. After aging, the LPS still dominated for specimens twisted at 380 °C; however, the LPS gradually decreased with decreasing deformation temperatures from 380 °C to 300 °C. Dynamically precipitated β, especially those decorating the grain boundaries, changed the competition pictures for the LPS and precipitates of other shapes after aging. Interestingly, LPS dominated the areas for the center section of the specimens after aging regardless of deformation temperatures. Low temperature deformation with high SRPC followed by rapid cooling rate increased the micro hardness of the alloy after aging due to refined grain, reduced precipitates size, decreased lamellar spacing as well as strain hardening.
KW - Aging
KW - AZ80+0.4% Ce magnesium alloy
KW - Cooling rate
KW - Deformation parameters
KW - Hot torsion
KW - Micro hardness
UR - http://www.scopus.com/inward/record.url?scp=85130464249&partnerID=8YFLogxK
U2 - 10.1016/j.jma.2022.03.004
DO - 10.1016/j.jma.2022.03.004
M3 - 文章
AN - SCOPUS:85130464249
SN - 2213-9567
VL - 12
SP - 639
EP - 658
JO - Journal of Magnesium and Alloys
JF - Journal of Magnesium and Alloys
IS - 2
ER -