The effect of porous structure of PMMA tunneling dielectric layer on the performance of nonvolatile floating-gate organic field-effect transistor memory devices

Mingdong Yi, Jingkun Shu, Yizheng Wang, Haifeng Ling, Chunyuan Song, Wen Li, Linghai Xie, Wei Huang

科研成果: 期刊稿件文章同行评审

47 引用 (Scopus)

摘要

In this paper, we used the low and high density porous structure of polymethylmethacrylate (PMMA) film as tunneling dielectric layer in the floating-gate organic field-effect transistor (OFET) memory devices. Compared to the thin/thick nonporous structure of PMMA tunneling layer, the porous structure of PMMA tunneling layer had positive impacts on the device performance of the floating-gate OFET memory devices. Moreover, it was found that the memory performance was also increased as pore density of PMMA film increased. The atomic force microscopy (AFM) results of both porous structure of PMMA film and pentacene film on porous structure of PMMA film revealed that high density porous structure of PMMA tunneling layer can produce larger tunneling area and more electron transfer paths between pentacene film and PMMA film, which resulted in high electron capture and release efficiency of the floating-gate OFET memory devices with porous structure of PMMA tunneling layer. In addition, our porous structure of PMMA tunneling layer as well as nonporous PMMA film has high electrical insulating property due to their semi-hollow structure film, which is favourable to maintain stable retention property. Eventually, the floating-gate OFET memory devices with high density porous structure of PMMA tunneling layer showed good nonvolatile memory properties with a large memory window of about 43 V, a high ON/OFF current ratio of about 104, and stable endurance and retention properties. Our results provided a new strategy to achieve the high performance floating-gate OFET memory devices.

源语言英语
页(从-至)95-101
页数7
期刊Organic Electronics
33
DOI
出版状态已出版 - 1 6月 2016
已对外发布

指纹

探究 'The effect of porous structure of PMMA tunneling dielectric layer on the performance of nonvolatile floating-gate organic field-effect transistor memory devices' 的科研主题。它们共同构成独一无二的指纹。

引用此