Synergistic grain boundary engineering for achieving strength-ductility balance in ultrafine-grained high-Cr-bearing multicomponent alloys

Xiaoming Liu, Kaikai Song, Zongde Kou, Jianhong Gong, Xiangyan Chen, Qingwei Gao, Hui Sun, Pingping Liu, Ruitao Qu, Lina Hu, Zequn Zhang, Parthiban Ramasamy, Zengqian Liu, Zhenjun Zhang, Feng Liu, Zhefeng Zhang, Jürgen Eckert

科研成果: 期刊稿件文章同行评审

26 引用 (Scopus)

摘要

Precipitation strengthening is a crucial strategy for ensuring the overall performance of conventional and multicomponent alloys to meet industrial demands. However, the mechanical properties of high-Cr-bearing alloys are often compromised by brittle Cr-rich precipitates at grain boundaries (GBs), leading to severe embrittlement. In this work, a multi-step thermomechanical process is employed to regulate discontinuous dynamic recrystallization (DDRX) and static recrystallization, achieving an ultrafine-grained microstructure. This optimized approach simultaneously impedes the continuous precipitation of the ordered L12 nanocrystals within the matrix and actively encourages the synergistic discontinuous precipitations of submicron L12 and Cr-rich σ particles at GBs, thereby enhancing (yield) strength and high-temperature thermal stability. The ultrafine grains facilitate uniform plastic deformation, characterized by pronounced parallel dislocation slip and stacking faults (SFs) within face-centered cubic (fcc) grains, while second-direction slips, SFs, and Lomer-Cottrell (L-C) lock networks near GB precipitates greatly alleviate stress concentration. Critically, the submicron L12 particles enveloping σ precipitates at GBs also display plastic deformation via mechanical twinning and dislocations, effectively impeding rapid crack propagation along GBs. This research not only provides new insights into the ductility-strength balance in advanced alloys but also proposes a compelling route for optimizing biphasic precipitation, expanding the applicability of high-Cr multicomponent alloys.

源语言英语
文章编号103992
期刊International Journal of Plasticity
177
DOI
出版状态已出版 - 6月 2024

指纹

探究 'Synergistic grain boundary engineering for achieving strength-ductility balance in ultrafine-grained high-Cr-bearing multicomponent alloys' 的科研主题。它们共同构成独一无二的指纹。

引用此