Synergistic dual atomic sites with localized electronic modulation enable high-performance lithium–oxygen batteries

Xuecheng Cao, Yu Zhang, Chengyi Lu, Kaiqi Fang, Long Chen, Xiangjun Zheng, Ruizhi Yang

科研成果: 期刊稿件文章同行评审

14 引用 (Scopus)

摘要

Lithium-oxygen batteries (LOBs) are recognized as promising candidates for next-generation energy storage system technologies due to their high theoretical energy density. Unfortunately, some fundamental issues still constrain the practical implementation of LOBs, including large overpotential, cathode clogging, and poor long-term stability, mainly due to the slow cathodic reaction kinetics. Therefore, the successful construction of rational catalysts becomes an urgent demand for the development of LOBs. Herein, Ni and Mn co-doped MoS2 (Ni/Mn-MoS2) is fabricated via a facile one-pot hydrothermal method and employed as an efficient cathode catalyst for LOBs. The electrochemical results show that the as-prepared Ni/Mn-MoS2 cathode catalyst exhibits low overpotential with a potential gap of 0.78 V, large discharge capacity of 28,195 mAh g−1 at a current density of 100 mA g−1, and enhanced rate capability. The theoretical calculations further reveal that the synergistic effect of Ni and Mn dual atomic sites modulates the electronic structure of catalyst surface, and then enhances the adsorption energy of intermediate product LiO2 and significantly reduces the overpotential for the formation/decomposition of the amorphous discharge product, thereby accelerating the reaction kinetics. This work may provide inspiration for the rational design of MoS2-based materials as highly efficient electrocatalysts for LOBs.

源语言英语
文章编号143351
期刊Chemical Engineering Journal
466
DOI
出版状态已出版 - 15 6月 2023
已对外发布

指纹

探究 'Synergistic dual atomic sites with localized electronic modulation enable high-performance lithium–oxygen batteries' 的科研主题。它们共同构成独一无二的指纹。

引用此