Synergistic dielectric regulation strategy of one-dimensional MoO2/Mo2C/C heterogeneous nanowires for electromagnetic wave absorption

Rui Xue, Di Lan, Rong Qiang, Zicheng Zang, Junwen Ren, Yulong Shao, Lei Rong, Junwei Gu, Jingbo Fang, Guanglei Wu

科研成果: 期刊稿件文章同行评审

38 引用 (Scopus)

摘要

Dielectric-dielectric nanocomposites with excellent synergistic effects are considered as a prospective avenue for the development of high-performance microwave absorbers. In this work, one-dimensional MoO2/Mo2C/C heterogeneous nanowires were synthesized via a straightforward co-precipitation and in situ pyrolysis process. The components were modulated by adjusting the reduction temperatures to achieve tunable electromagnetic parameters thereby optimizing the dielectric loss. The results showed that the optimized MoO2/Mo2C/C composite exhibited a minimum reflection loss of −50.7 dB at an ultra-thin thickness of 1.8 mm and an effective absorption bandwidth of 6 GHz at 2.3 mm when the calcination temperature was 700 °C. Based on the studies of electromagnetic parameters and radar cross section simulation outcomes, both the interwoven one-dimensional structure and synergistic effects between the components have endowed the material with good impedance matching and introduced various loss mechanisms such as conductivity loss, multiple polarization relaxation, and multiple reflection/scattering. This work presented a viable strategy for the preparation of one-dimensional MoO2-based dielectric microwave absorption materials.

源语言英语
文章编号119877
期刊Carbon
233
DOI
出版状态已出版 - 2月 2025

指纹

探究 'Synergistic dielectric regulation strategy of one-dimensional MoO2/Mo2C/C heterogeneous nanowires for electromagnetic wave absorption' 的科研主题。它们共同构成独一无二的指纹。

引用此