SurgicalSAM: Efficient Class Promptable Surgical Instrument Segmentation

Wenxi Yue, Jing Zhang, Kun Hu, Yong Xia, Jiebo Luo, Zhiyong Wang

科研成果: 书/报告/会议事项章节会议稿件同行评审

24 引用 (Scopus)

摘要

The Segment Anything Model (SAM) is a powerful foundation model that has revolutionised image segmentation. To apply SAM to surgical instrument segmentation, a common approach is to locate precise points or boxes of instruments and then use them as prompts for SAM in a zero-shot manner. However, we observe two problems with this naive pipeline: (1) the domain gap between natural objects and surgical instruments leads to inferior generalisation of SAM; and (2) SAM relies on precise point or box locations for accurate segmentation, requiring either extensive manual guidance or a well-performing specialist detector for prompt preparation, which leads to a complex multi-stage pipeline. To address these problems, we introduce SurgicalSAM, a novel end-to-end efficient-tuning approach for SAM to effectively integrate surgical-specific information with SAM's pre-trained knowledge for improved generalisation. Specifically, we propose a lightweight prototype-based class prompt encoder for tuning, which directly generates prompt embeddings from class prototypes and eliminates the use of explicit prompts for improved robustness and a simpler pipeline. In addition, to address the low inter-class variance among surgical instrument categories, we propose contrastive prototype learning, further enhancing the discrimination of the class prototypes for more accurate class prompting. The results of extensive experiments on both EndoVis2018 and EndoVis2017 datasets demonstrate that SurgicalSAM achieves state-of-the-art performance while only requiring a small number of tunable parameters. The source code is available at https://github.com/wenxi-yue/SurgicalSAM.

源语言英语
主期刊名Technical Tracks 14
编辑Michael Wooldridge, Jennifer Dy, Sriraam Natarajan
出版商Association for the Advancement of Artificial Intelligence
6890-6898
页数9
版本7
ISBN(电子版)1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879
DOI
出版状态已出版 - 25 3月 2024
活动38th AAAI Conference on Artificial Intelligence, AAAI 2024 - Vancouver, 加拿大
期限: 20 2月 202427 2月 2024

出版系列

姓名Proceedings of the AAAI Conference on Artificial Intelligence
编号7
38
ISSN(印刷版)2159-5399
ISSN(电子版)2374-3468

会议

会议38th AAAI Conference on Artificial Intelligence, AAAI 2024
国家/地区加拿大
Vancouver
时期20/02/2427/02/24

指纹

探究 'SurgicalSAM: Efficient Class Promptable Surgical Instrument Segmentation' 的科研主题。它们共同构成独一无二的指纹。

引用此