Superplastic dual-phase nanostructure Mg alloy: A molecular dynamics study

H. Y. Song, X. D. Zuo, M. R. An, M. X. Xiao, Y. L. Li

科研成果: 期刊稿件文章同行评审

14 引用 (Scopus)

摘要

The introduction of amorphous phase and amorphous-crystalline interfaces is a new approach for enhancing mechanical performance of the Mg-based composite materials. In this work, we use molecular dynamics simulation method to explore the effect of amorphous phase size on the mechanical behavior of dual-phase nanostructure Mg alloy under tensile loading. The results show that two different deformation mechanisms of the dual-phase nanostructure Mg alloy occur depending on crystalline phase size (d) and amorphous thickness (t). There is a critical amorphous thickness (t c ) for each sample to achieve nearly perfect plasticity, regardless of d. When t < t c , the plasticity of dual-phase nanostructure Mg alloy is provided by amorphous and crystalline phase. However, the plasticity is provided only by amorphous phase, the crystalline phase hardly participates in plastic deformation when t > t c . The results also indicate that reducing d and increasing t is consistent for improving the plastic effect of the dual-phase nanostructure Mg alloy. The optimal matching relationship between d and t is given. Moreover, some qualitative and quantitative analysis about the plastic deformation behavior of dual-phase nanostructure Mg alloy are also presented.

源语言英语
页(从-至)295-300
页数6
期刊Computational Materials Science
160
DOI
出版状态已出版 - 1 4月 2019

指纹

探究 'Superplastic dual-phase nanostructure Mg alloy: A molecular dynamics study' 的科研主题。它们共同构成独一无二的指纹。

引用此