SUNet: Symmetric Undistortion Network for Rolling Shutter Correction

Bin Fan, Yuchao Dai, Mingyi He

科研成果: 书/报告/会议事项章节会议稿件同行评审

36 引用 (Scopus)

摘要

The vast majority of modern consumer-grade cameras employ a rolling shutter mechanism, leading to image distortions if the camera moves during image acquisition. In this paper, we present a novel deep network to solve the generic rolling shutter correction problem with two consecutive frames. Our pipeline is symmetrically designed to predict the global shutter image corresponding to the intermediate time of these two frames, which is difficult for existing methods because it corresponds to a camera pose that differs most from the two frames. First, two time-symmetric dense undistortion flows are estimated by using well-established principles: pyramidal construction, warping, and cost volume processing. Then, both rolling shutter images are warped into a common global shutter one in the feature space, respectively. Finally, a symmetric consistency constraint is constructed in the image decoder to effectively aggregate the contextual cues of two rolling shutter images, thereby recovering the high-quality global shutter image. Extensive experiments with both synthetic and real data from public benchmarks demonstrate the superiority of our proposed approach over the state-of-the-art methods.

源语言英语
主期刊名Proceedings - 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021
出版商Institute of Electrical and Electronics Engineers Inc.
4521-4530
页数10
ISBN(电子版)9781665428125
DOI
出版状态已出版 - 2021
活动18th IEEE/CVF International Conference on Computer Vision, ICCV 2021 - Virtual, Online, 加拿大
期限: 11 10月 202117 10月 2021

出版系列

姓名Proceedings of the IEEE International Conference on Computer Vision
ISSN(印刷版)1550-5499

会议

会议18th IEEE/CVF International Conference on Computer Vision, ICCV 2021
国家/地区加拿大
Virtual, Online
时期11/10/2117/10/21

指纹

探究 'SUNet: Symmetric Undistortion Network for Rolling Shutter Correction' 的科研主题。它们共同构成独一无二的指纹。

引用此