TY - GEN
T1 - Study on the influence of self-circulating and slot combined casing treatment on the stability of transonic compressor
AU - Yan, Song
AU - Chu, Wu Li
AU - Shen, Zhengjing
N1 - Publisher Copyright:
© 2020 ASME
PY - 2020
Y1 - 2020
N2 - Casing treatment(CT) has proven to be an effective way to enhance stability, and has a very important role in enhancing the stability of the compressor. Researchers have made great achievements and progress in the study of single-type CT structure, but less research on combined-type CT structure. In this paper, the isolated rotor of a high-load axial-flow compressor is taken as the research object, and the numerical simulation method is used to study the enhancing stability mechanism of the combined-type casing treatment(ASCT) by combining the axial slot casing treatment(ASC) and the self-circulating casing treatment(SCT). The study found that the reasonable choice of the ASCT scheme can make the enhancing stability effect of the ASCT higher than that of the single-type CT structure scheme. Through detailed quantitative analysis of the rotor's internal flow field, it was found that ASC and SCT can suction the airflow downstream of the rotor passage, and then spray it into the main flow from the upstream of the rotor passage, and the blade tip blockage is reduced, the flow capacity of the blade tip passage is improved, and the rotor stability is enhanced by suppressing tip clearance leakage flow. The ASCT has both the spraying effect of the ASC and the SCT, and has the best improvement effect on the flow blockage zone in the rotor passage, and the obtained enhancing stability effect is also best. In addition, the circulation and re-injection of the airflow after CT has aggravated the flow blending loss in the blade tip zone, which has reduced the rotor efficiency. The ASCT has both the characteristics of the effect of the ASC and the SCT on the rotor efficiency, resulting in a large reduction in the rotor efficiency after using the ASCT.
AB - Casing treatment(CT) has proven to be an effective way to enhance stability, and has a very important role in enhancing the stability of the compressor. Researchers have made great achievements and progress in the study of single-type CT structure, but less research on combined-type CT structure. In this paper, the isolated rotor of a high-load axial-flow compressor is taken as the research object, and the numerical simulation method is used to study the enhancing stability mechanism of the combined-type casing treatment(ASCT) by combining the axial slot casing treatment(ASC) and the self-circulating casing treatment(SCT). The study found that the reasonable choice of the ASCT scheme can make the enhancing stability effect of the ASCT higher than that of the single-type CT structure scheme. Through detailed quantitative analysis of the rotor's internal flow field, it was found that ASC and SCT can suction the airflow downstream of the rotor passage, and then spray it into the main flow from the upstream of the rotor passage, and the blade tip blockage is reduced, the flow capacity of the blade tip passage is improved, and the rotor stability is enhanced by suppressing tip clearance leakage flow. The ASCT has both the spraying effect of the ASC and the SCT, and has the best improvement effect on the flow blockage zone in the rotor passage, and the obtained enhancing stability effect is also best. In addition, the circulation and re-injection of the airflow after CT has aggravated the flow blending loss in the blade tip zone, which has reduced the rotor efficiency. The ASCT has both the characteristics of the effect of the ASC and the SCT on the rotor efficiency, resulting in a large reduction in the rotor efficiency after using the ASCT.
KW - Axial-flow compressor
KW - Casing treatment
KW - Enhance stability
KW - Tip clearance leakage flow
UR - http://www.scopus.com/inward/record.url?scp=85099739856&partnerID=8YFLogxK
U2 - 10.1115/GT2020-14321
DO - 10.1115/GT2020-14321
M3 - 会议稿件
AN - SCOPUS:85099739856
T3 - Proceedings of the ASME Turbo Expo
BT - Turbomachinery
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition, GT 2020
Y2 - 21 September 2020 through 25 September 2020
ER -