Study on optimization design and flow control mechanism of little blades in a compressor cascade

Zhengtao Guo, Wuli Chu, Xiangyi Chen

科研成果: 书/报告/会议事项章节会议稿件同行评审

2 引用 (Scopus)

摘要

In view of the characteristics of flow separation in the compressor cascade corner region, a new flow control method for installing little blades in the front of the cascade passage was proposed, which took into account the flow control advantages of end wall fences and vortex generators. Firstly, the little blades could hinder the cross flow on the end wall and the development of the horseshoe vortex pressure surface branch. Secondly, the little blades could generate induced vortices to take away the low-energy fluid near the end wall and the corner region. Based on numerical simulations, the effects of different pitchwise positions, stagger angles and heights of the little blades on the aerodynamic performance of the cascade were studied, and the optimal little blades were obtained by NSGA-II using EBF neural network as the agent model. The results show that the little blades have the optimal pitchwise position, stagger angle and height range for improving the aerodynamic performance of the cascade. When the optimized little blades are introduced in the baseline cascade, the stable working range of the cascade is expanded, and the stall type of the cascade changes from the hub-corner stall to the overload of flow separation near the mid-span. At the near stall attack angle of the baseline, the total pressure loss coefficient is reduced by about 10.38% and the static pressure coefficient is increased by about 4.31%. Meanwhile, the loss of the lower span is decreased and the diffuser capacity of the whole span is improved. The passage secondary loss and wake loss are reduced because of the delay of corner separation. Moreover, the strength of the end wall vortex is weakened and the end wall vortex no longer develops as part of the passage vortex. The induced vortex, horseshoe vortex pressure surface branch and initial passage vortex develop into new passage vortex.

源语言英语
主期刊名Turbomachinery
出版商American Society of Mechanical Engineers (ASME)
ISBN(电子版)9780791884065
DOI
出版状态已出版 - 2020
活动ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition, GT 2020 - Virtual, Online
期限: 21 9月 202025 9月 2020

出版系列

姓名Proceedings of the ASME Turbo Expo
2A-2020

会议

会议ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition, GT 2020
Virtual, Online
时期21/09/2025/09/20

指纹

探究 'Study on optimization design and flow control mechanism of little blades in a compressor cascade' 的科研主题。它们共同构成独一无二的指纹。

引用此