TY - GEN
T1 - Stochastic Kriging for random simulation metamodeling with finite sampling
AU - Wang, Bo
AU - Bai, Junqiang
AU - Gea, Hae Chang
PY - 2013
Y1 - 2013
N2 - As a metamodeling method, Kriging has been intensively developed for deterministic design in the past few decades. However, Kriging is not able to deal with the uncertainty of many engineering processes. By incorporating the uncertainty of data, Stochastic Kriging methods has been developed to analyze and predict random simulation results, but the results cannot fit the problem with uncertainty well. In this paper, deterministic Kriging are extended to stochastic space theoretically, where a novel form of Stochastic Kriging that fully considers the intrinsic uncertainty of data and number of replications is proposed on the basis of finite inputs. It formulates a more reasonable optimization problem via a stochastic process, and then derives the spatial correlation models underlying a random simulation. The obtained results are more general than Kriging, which can fit well with many uncertainty-based problems. Three examples will illustrate the method's application through comparison with the existing methods: the novel method shows that the results are much closer to reality.
AB - As a metamodeling method, Kriging has been intensively developed for deterministic design in the past few decades. However, Kriging is not able to deal with the uncertainty of many engineering processes. By incorporating the uncertainty of data, Stochastic Kriging methods has been developed to analyze and predict random simulation results, but the results cannot fit the problem with uncertainty well. In this paper, deterministic Kriging are extended to stochastic space theoretically, where a novel form of Stochastic Kriging that fully considers the intrinsic uncertainty of data and number of replications is proposed on the basis of finite inputs. It formulates a more reasonable optimization problem via a stochastic process, and then derives the spatial correlation models underlying a random simulation. The obtained results are more general than Kriging, which can fit well with many uncertainty-based problems. Three examples will illustrate the method's application through comparison with the existing methods: the novel method shows that the results are much closer to reality.
UR - http://www.scopus.com/inward/record.url?scp=84896977594&partnerID=8YFLogxK
U2 - 10.1115/DETC2013-13361
DO - 10.1115/DETC2013-13361
M3 - 会议稿件
AN - SCOPUS:84896977594
SN - 9780791855898
T3 - Proceedings of the ASME Design Engineering Technical Conference
BT - 39th Design Automation Conference
PB - American Society of Mechanical Engineers
T2 - ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2013
Y2 - 4 August 2013 through 7 August 2013
ER -