SSHR: Leveraging Self-supervised Hierarchical Representations for Multilingual Automatic Speech Recognition

Hongfei Xue, Qijie Shao, Kaixun Huang, Peikun Chen, Jie Liu, Lei Xie

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

Multilingual automatic speech recognition (ASR) systems have garnered attention for their potential to extend language coverage globally. While self-supervised learning (SSL) models, like MMS, have demonstrated their effectiveness in multilingual ASR, it is worth noting that various layers' representations potentially contain distinct information that has not been fully leveraged. In this study, we propose a novel method that leverages self-supervised hierarchical representations (SSHR) to fine-tune the MMS model. We first analyze the different layers of MMS and show that the middle layers capture language-related information, and the high layers encode content-related information, which gradually decreases in the final layers. Then, we extract a language-related frame from correlated middle layers and guide specific language extraction through self-attention mechanisms. Additionally, we steer the model toward acquiring more content-related information in the final layers using our proposed Cross-CTC. We evaluate SSHR on two multilingual datasets, Common Voice and ML-SUPERB, and the experimental results demonstrate that our method achieves state-of-the-art performance to the best of our knowledge.

源语言英语
主期刊名2024 IEEE International Conference on Multimedia and Expo, ICME 2024
出版商IEEE Computer Society
ISBN(电子版)9798350390155
DOI
出版状态已出版 - 2024
活动2024 IEEE International Conference on Multimedia and Expo, ICME 2024 - Niagra Falls, 加拿大
期限: 15 7月 202419 7月 2024

出版系列

姓名Proceedings - IEEE International Conference on Multimedia and Expo
ISSN(印刷版)1945-7871
ISSN(电子版)1945-788X

会议

会议2024 IEEE International Conference on Multimedia and Expo, ICME 2024
国家/地区加拿大
Niagra Falls
时期15/07/2419/07/24

指纹

探究 'SSHR: Leveraging Self-supervised Hierarchical Representations for Multilingual Automatic Speech Recognition' 的科研主题。它们共同构成独一无二的指纹。

引用此