TY - JOUR
T1 - Spontts
T2 - 2024 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2024
AU - Li, Hanzhao
AU - Zhu, Xinfa
AU - Xue, Liumeng
AU - Song, Yang
AU - Chen, Yunlin
AU - Xie, Lei
N1 - Publisher Copyright:
© 2024 IEEE.
PY - 2024
Y1 - 2024
N2 - Spontaneous speaking style exhibits notable differences from other speaking styles due to various spontaneous phenomena (e.g., filled pauses, prolongation) and substantial prosody variation (e.g., diverse pitch and duration variation, occasional non-verbal speech like a smile), posing challenges to modeling and prediction of spontaneous style. Moreover, the limitation of high-quality spontaneous data constrains spontaneous speech generation for speakers without spontaneous data. To address these problems, we propose SponTTS, a two-stage approach based on neural bottleneck (BN) features to model and transfer spontaneous style for TTS. In the first stage, we adopt a Conditional Variational Autoencoder (CVAE) to capture spontaneous prosody from a BN feature and involve the spontaneous phenomena by the constraint of spontaneous phenomena embedding prediction loss. Besides, we introduce a flow-based predictor to predict a latent spontaneous style representation from the text, which enriches the prosody and context-specific spontaneous phenomena during inference. In the second stage, we adopt a VITS-like module to transfer the spontaneous style learned in the first stage to the target speakers. Experiments demonstrate that SponTTS is effective in modeling spontaneous style and transferring the style to the target speakers, generating spontaneous speech with high naturalness, expressiveness, and speaker similarity. The zero-shot spontaneous style TTS test further verifies the generalization and robustness of SponTTS in generating spontaneous speech for unseen speakers.
AB - Spontaneous speaking style exhibits notable differences from other speaking styles due to various spontaneous phenomena (e.g., filled pauses, prolongation) and substantial prosody variation (e.g., diverse pitch and duration variation, occasional non-verbal speech like a smile), posing challenges to modeling and prediction of spontaneous style. Moreover, the limitation of high-quality spontaneous data constrains spontaneous speech generation for speakers without spontaneous data. To address these problems, we propose SponTTS, a two-stage approach based on neural bottleneck (BN) features to model and transfer spontaneous style for TTS. In the first stage, we adopt a Conditional Variational Autoencoder (CVAE) to capture spontaneous prosody from a BN feature and involve the spontaneous phenomena by the constraint of spontaneous phenomena embedding prediction loss. Besides, we introduce a flow-based predictor to predict a latent spontaneous style representation from the text, which enriches the prosody and context-specific spontaneous phenomena during inference. In the second stage, we adopt a VITS-like module to transfer the spontaneous style learned in the first stage to the target speakers. Experiments demonstrate that SponTTS is effective in modeling spontaneous style and transferring the style to the target speakers, generating spontaneous speech with high naturalness, expressiveness, and speaker similarity. The zero-shot spontaneous style TTS test further verifies the generalization and robustness of SponTTS in generating spontaneous speech for unseen speakers.
KW - Expressive speech synthesis
KW - spontaneous speech
KW - style transfer
UR - http://www.scopus.com/inward/record.url?scp=105001577224&partnerID=8YFLogxK
U2 - 10.1109/ICASSP48485.2024.10445828
DO - 10.1109/ICASSP48485.2024.10445828
M3 - 会议文章
AN - SCOPUS:105001577224
SN - 1520-6149
SP - 12171
EP - 12175
JO - ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
JF - ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Y2 - 14 April 2024 through 19 April 2024
ER -